Publications / 2020 Proceedings of the 37th ISARC, Kitakyushu, Japan

A Method to Produce & Visualize Interactive Work Instructions for Modular Products within Onsite Construction

Raafat Hussamadin, Jani Mukkavaara and Gustav Jansson
Pages 48-55 (2020 Proceedings of the 37th ISARC, Kitakyushu, Japan, ISBN 978-952-94-3634-7, ISSN 2413-5844)
Abstract:

Well detailed, informative and accurate work instructions are a necessity to mitigate delays in construction. Today, this is done through a combination of shop drawings, documents, sheets, work pre-planning meetings and onsite verbal work instructions to transfer knowledge and information between all actors. Due to the subjectivity of these methods, many incorrect assumptions and man-made errors originated from miscommunication and misinterpretation can occur. Such issues are tough to identify prior to their occurrence on construction sites, leading to construction delays. Virtual Reality (VR) technology can simulate and visualize assembly processes using Standard Operating Procedure (SOP). The visualization aims to ensure a quality communication with skilled workers and to aid their interpretation of SOPs by reducing assumptions. As a result of a more effective education, it can support the collaboration between actors. Utilization of SOPs for visualization of Work Instructions (WI) and assembly processes are important, because many process WIs on construction sites are repetitive. Modularity can increase the efficiency by supporting instancing and variation creation of construction tasks and products. Interactivity can support the continuously changing status and demands of construction sites. A method has been iteratively developed to support visualization of modular and interactive SOPs within the context of industrialized house-building (IHB), to increase the quality and consistency of communication at construction sites. Concurrently to development of the method, a prototype using VR technology was developed. Interactive functionalities along with VR technology make it possible to adjust SOP and WI modules to suit the demands and conditions of the construction site, including real-time. As a result, the developed method is responsive and adjustable to conditions such as weather, man-made errors, assembly re-sequencing and re-scheduling. Combining product design, SOPs, WIs and assembly process in early stages of construction has shown to help identify potential issues and aid in planning for cautious measurements. Results show that by using the developed method, skilled workers were able to identify occurring miscommunications, and misinterpretations between them, site managers and foremen as well as ensuring their understanding.

Keywords: Virtual Reality; Standard Operation Procedure; Work Instruction; Process Visualization; Interactive; Modular