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Abstract – 
Modular construction methods have recently gained 
interest due to the advantages offered in terms of 
safety, quality, and productivity for projects. In this 
method, a significant portion of the construction is 
performed off-site in factories where modular 
components are built in different workstations, 
assembled on the production line, and shipped to the 
site for installation. Due to the labor-intensive nature 
of tasks, cycle times in modular construction factories 
are highly variable, which commonly leads to major 
bottlenecks and delays in construction projects. To 
remedy this effect, recent methods rely on sensors 
such as RFID to monitor the production process, 
which is reportedly expensive, and intrusive to the 
work process. Recently, computer vision-based 
methods have been proposed to track the production 
process in modular construction factories. However, 
these methods overlook monitoring the assembly 
process on the production line. Therefore, this paper 
presents a method to monitor the assembly process by 
integrating computer vision-based methods with 
Building Information Modeling (BIM). The proposed 
method detects the modular units using object 
segmentation; superimposes the installation area with 
the corresponding 2D region using BIM, and 
identifies the installation of the components using 
image processing techniques. The proposed method 
has been validated using surveillance videos captured 
from a modular construction factory in the US. 
Successful implementation of the proposed method 
can lead to timely identification of delays during the 
assembly process and reduce delays in modular 
integrated construction projects. 
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1 Introduction 
Off-site and modular construction is increasingly 

being seen as a promising method of project delivery due 
to the advantages offered in terms of productivity, 
schedule, and cost [1]. Here, building components are 
produced in a controlled environment such as a 
prefabrication factory, and shipped to the site for 
installation, leaving relatively minimal work to be 
performed on-site [2]. It also enables incorporation of 
energy-efficient building strategies at scale to reduce first 
cost of installation for affordable housing. Despite these 
advantages and the recent advancements in the 
application of robotics inside modular construction 
factories [3], [4], the current state of these factories in the 
U.S. still highly relies on manual labor. In addition, 
variability in design [5] and the stochastic nature of the 
orders [6], all, lead to the high variability of cycle times 
and result in major bottlenecks. These bottlenecks 
reportedly can account for up to 15% of work time, 
reduce productivity, and cause delays in modular 
integrated construction projects [7]. Therefore, it is 
important to identify and mitigate these bottlenecks in 
order to prevent such delays from negatively affecting 
construction projects.  

Monitoring and control systems inside factories can 
be used to identify bottlenecks inside the factories and 
enable optimal tactical and strategic responses to 
dynamic changes on the factory floor [8]. However, the 
current state of the monitoring practice inside modular 
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construction factories commonly relies on manual 
methods such as five-minute rating, and work sampling 
[9], which are prohibitively expensive and error-prone 
when implemented in a large scale [10]. Alternatively,
sensors such as radio-frequency identification (RFID) [5],
audio [11], and inertial measurement units (IMU) [12]
were used to automatically collect the process data from 
the shopfloor in modular construction factories. However, 
these systems are expensive to maintain and can cause 
intrusion into the progress of work, which can impede
their practical application [13].

Computer vision-based methods can overcome these 
challenges by remotely monitoring the progress of work. 
During the past decade, these methods have attracted 
much attention from the construction community at large
[14]. However, despite these advancements, recent 
research unveils an array of challenges computer vision-
based methods face when applied inside modular 
construction factories. Examples of such challenges are 
the fast-paced environment which causes inter-object
occlusions [15], high variability of tasks which reduces 
the performance of activity recognition methods [16],
and fundamental differences in processes compared to 
on-site tasks which hinder the vision-based knowledge 
transfer across on-site and off-site environment [17].

To address these challenges, computer vision-based 
methods were used to monitor the ergonomics of workers
[18], their activities [15], and tackle technical challenges 
such as occlusion in tracking the workers [16]. To 
monitor the processes, Zheng et al. [19] proposed a 
framework that extracts the cycle time for the installation 
of modules after being delivered to the construction site. 
They fine-tuned a Mask R-CNN object segmentation 
algorithm on a total of 1100 synthetic and real images of 
finished prefabricated modules. In order to monitor the 
progress of work in panelized construction factory 
workstations, Martinez et al. [17] proposed a vision-
based monitoring method that detects the crane and the 
workers in a single station and updates the parameters of 
a finite state machine to track the progress of work. More 
recently, Park et al. [20] [21] created a synthetic image 
dataset of modular units inside the factory and evaluated 
a CNN-based 3D reconstruction network from the 
collected 2D synthetic images. 

Based on the conducted review of the related 
literature following gaps are identified and targeted in 
this study: (1) drawbacks of contact-based sensors: 
majority of the previously proposed monitoring methods 
inside modular construction factories rely on contact-
based sensors. Despite the accuracy these methods 
provide, they are expensive to implement at large scale; 
they are susceptible to noise, and they are intrusive to the 
progress of work; (2) drawback of vision-based 
monitoring methods: previous research identifies the
movement of equipment and uses this information as 

queues to monitor the progress of work. However, in 
many cases the movement of equipment is not related to 
the progress of work, such as the assembly process, and
(3) limitation of detection vs. segmentation: previously
proposed progress monitoring methods inside modular
construction factories rely on detection methods,
however, detection bounding boxes are not reliable for
progress monitoring as they entail a large background
area, unrelated to the object of interest, especially in
oblique views of CCTV video footage.

This study attempts to propose a computer vision-
based progress monitoring method to overcome the 
drawbacks of contact-based sensors, use object
segmentation to detect the modular units at pixel level, 
and monitor the assembly progress of components on the 
modular unit on the production line. 

The remainder of this paper is structured as follows. 
First, the proposed method is presented. This is followed 
by a brief explanation of a case study that demonstrates 
the applicability of the framework. The paper ends with 
conclusions and future work.

2 Methodology
The goal of the proposed method is to monitor the 

assembly progress in modular construction factories. 
Figure 1 shows the objectives to achieve this goal.

Figure 1. Workflow of the proposed method

As shown in Figure 1, the objectives of this study are:
(1) module detection: to detect and segment the modular
units on the shop floor; (2) identification of the
installation region: to detect the installation region of
interest (RoI) on the video, and (3) identifying the
installation of the component: to classify the state of the
components as installed or not-installed. These
objectives are explained in further detail, in following
sections.

2.1 Module Detection
Here, the modular units are detected and their 

boundary is segmented using an object detection and 
segmentation method. Doing so, Mask R-CNN instance 
segmentation is used to demarcate the modular units on 
the shop floor, at a pixel level. Mask R-CNN is a state-
of-the-art model for instance segmentation, developed on 
top of Faster R-CNN. Faster R-CNN is a region-based 
convolutional neural networks [22], that returns 



bounding boxes for each object and its class label with a 
confidence score. Figure 2 shows the architecture of the 
Mask R-CNN algorithm used on this study.

Figure 2. Architecture of the Mask R-CNN 
algorithm

As shown in figure 2, the algorithm first performs 
detection by drawing a bounding box around the object 
of interest. However, this bounding box commonly 
includes a large portion of the background area, since 
CCTV cameras are commonly installed in highly oblique
orientation to cover a large portion of the factory. As a 
result, these bounding boxes cannot be efficiently used to 
extract precise reference points on the modular unit and 
use them to identify the installation regions. Therefore, 
the Mask Head in the segmentation algorithm is used to 
precisely annotate the boundaries of the modular unit. 
Finally, in order to identify the left corner of the module, 
the lowest point in each detected instance is identified as 
the reference point. 

2.2 Identification of Installation Region
Here, the installation region of each component on the 

modular unit is annotated in the video using the BIM 
model. Figure 3 shows the pipeline that creates this 
association between the points in the virtual and real 
space using projective geometry, and equation 1 shows 
the projective transformation formula using the 
homography matrix H.

Figure 3. Region of Interest Identification
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In equation 1, ( 𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) denotes the pixel 

coordinates of a point on the image, ( 𝑥1, 𝑥2, 𝑥3) denotes 
the pixel coordinates of a point on in the virtual space, 
and ℎ1 to ℎ9 denote the translation, rotation , and scale 
parameters. In this case, 𝑥3

′ , 𝑥3 are set to zero as both sets 
of points are constrained to planes. 
As shown in Figure 3, a plugin is designed in Revit 
software to extract four points located on the modular 
unit. Specifically, the designed plugin uses Revit API to 
loop through all the coordinates of a the “floor” type, and 
exports the four corners of the element to an excel sheet. 
Subsequently, these four corner points are manually 
identified on the video and the projection matrix is
estimated using the homography formula shown in 
equation 1. It is important to note that this process needs 
to be done only once for each CCTV camera, since all the 
future in-coming modules are at the same height and 
therefore on the same plane. Therefore, the same 
homography matrix can be used for all stations visible in 
the same camera. However, the module detection step
and identifying a reference point on the module has to be 
performed each time a module comes into the station 
since the exact location of the module inside the station 
is not fixed. Furthermore, the simple template-based 
matching expands the generalizability and practicality of 
this method to other factories by allowing the domain 
experts to easily annotate two templates for each station 
in the new factory. This approach also made this method 
robust to the changes in the appearance of the modular 
unit which occurs across the production line as the 
modular units are developed.

A grid parallel to the edges of the modular unit is
projected on the plane of the modular units in the video, 
using the corner of the unit as the reference point. Finally, 
extracted points of the component, which needs to be 
installed, are projected on the generated grid. Equation 2 
shows how the homographic matrix is used to calculate 
the pixel location of installation regions and what input 
BIM points are used. 
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In Equation 2, the inverse of the H matrix, computed 
from the previous equation, is used and multiplied by (X, 
Y, 0), which denotes the coordinates of one corner of the 
region of interest from the BIM model. In the proposed 
method, the (X, Y, 0) coordinates are exported from the 
BIM model, where the designed API performs a search 
for elements with type “bath pod” and returns the corner 



coordinates of the element. Finally, the (x, y, 0) is 
computed which denotes one corner of the installation 
point in the pixel space. Using four corners of the region 
of interest from the BIM model in equation 2 provides
the RoI of the installation point in the pixel space. 

2.3 Identifying the Installation of Component
Here, the objective is to use computer vision 

techniques to identify if the component has been installed 
in the pre-planned location on the modular unit, or not. 
Figure 4 shows the pipeline that classifies each 
installation region of interest as installed or not-installed. 

Figure 4. Identifying Installation of Component

As shown in Figure 4, a template-based matching 
approach is employed to compare the current state of the 
region of interest with template images of two possible 
states. Doing so, for each installation region of interest; 
template images of ‘installed’ and ‘not-installed’ are first 
annotated. Specifically, two images for each station is 
annotated as template from the ‘installed’ and ‘not-
installed’ states. In the proposed method images are 
extracted and annotated from the same factory, and the 
same camera view. Scale Invariant Feature Transform 
method [23] is used to extract and describe the keypoints 
in the video and the templates; Cosine similarity function 
is used to estimate the cost of matching between the
regions of the interest in the video and the template; 
Hungarian method is used to match the region of interest 
in the video with the most similar template. Finally, the 
component is classified as installed or not-installed based 
on the result of matching. Specifically, if the cost of 
matching between the image and the ‘installed’ template 
is less than the cost of matching between the image and 
the ‘not-installed’ state then the component is classified 
as installed. 

The next section evaluates the proposed method on 
the videos collected from a modular construction factory.

3 Case Study
The proposed method was evaluated using 

surveillance videos captured from a modular construction 

factory in the US. Collected videos include five days of 
12-hour shifts in a single workstation. In these videos,
modular units move from one station to the next as
components such as walls, and bath pods are installed.
The goal of this implementation is to evaluate the
proposed method by identifying the installation of a bath
pod unit on a modular unit in a single workstation, and
comparing the results to manual monitoring of videos.

3.1 Module Detection
Here, the modular units were detected and segmented by 
training the segmentation algorithm on the created 
dataset. Using the collected videos, an image dataset 
comprising 200 train and 60 test instances of modular 
units was annotated. Both sets were from the same 
factory, however, the test  set was created using a camera 
view similar to the one in Figure 5, while the train set was 
created using other cameras covering other stations 
further down the production line. The appearance of 
these modules differed from the ones in the test set as the 
components such as walls were being installed. Next, the 
Mask R-CNN object segmentation algorithm with 
Resnet-50 backbone was pre-trained on COCO dataset
using PyTorch framework. The last layer of the network 
was fine-tuned on the training dataset for 40 epochs, with 
an initial learning rate of 0.001, a momentum of 0.9, and 
a decay of 0.0001, using an RTX1080 GPU for 0.5 hour.
Validation of the model on the test set resulted in average 
precision of 0.75 when Intersection over Union (IoU)
parameter was set to 0.75. Figure 5 shows an example 
image where four modular units are detected with a 
bounding box and segmented with different colors. In 
this figure, workstation three is annotated with color 
purple. Figure 6 shows the annotated ground truth of this 
image. 

Figure 5. Example instance segmentation result



Figure 6. Ground truth annotated with yellow line

Finally, one point from each detected instance is 
picked as a reference at the lowest point of the detection 
instance. This point is annotated with a yellow cross in 
Figure 5. The radial distortion of the camera was 
disregarded, since the both source and target datasets are 
capture from similar cameras, however, rectification of 
the lens distortion can improve the performance of the 
detection algorithm which was left for future work. 

3.2 Installation Region Identification 
Here, the projection matrix was estimated and the 

installation region of interest was projected on the video. 
As shown in Figure 7, four corresponding corner points 
on the video are picked manually. 

Figure 7. Extracting the corresponding points 
using the designed plugin

As shown in Figure 7, the corresponding points are 
extracted automatically using the designed BIM plugin in 
Revit. Here, the meta-data of the 3D module is 
augmented with a ‘type’ custom field. The designed 
plugin performs a search through all elements in the 
model filter by ‘FilteredElementCollector’ constructor

to identify the element with type ‘floor’, and extracts the 
corner coordinates of the element and stores the data in 
an excel sheet. These coordinates are then used to 
estimate the projection matrix.

Finally, the grid and the location of the installation 
region is projected from the BIM model onto the video. 
Figure 8 shows the projected axis grids with smaller red 
dots and the projected boundary of the location of the 
installation component with purple color. 

Figure 8. Projected installation location on the 
detected instance of modular unit

3.3 Identifying the Installation of Component
Here, the installation of a bath pod unit is monitored

and identified using the proposed computer vision-based 
method. Figure 9 shows an example result for matching 
the identified installation region of interest in the detected 
modular unit in workstation three, with the template. 

Figure 9. Matching template RoIs of the 
installation region on the left column with query 



RoIs of the installation region on the right 
column: (a) matching an empty template with an 

empty query, (b) matching an empty template 
with an occupied query, (c) matching an 

occupied template with an occupied query, (d) 
matching an occupied template with an empty 

query

As shown in Figure 9, the ‘installed’ and ‘not-
installed’ video images on the left column are matched 
with the templates on the right via parallel blue lines 
indicating strong matches. Figure 10 shows a qualitative
assessment of the proposed method for identifying the 
installation for the bath pod unit on the video.

Figure 10. Installation of bath pod, as detected in 
the pre-planned location, on the modular unit

In Figure 10, on the right, the bath pod unit has not 
yet been installed in the pre-planned region which is 
annotated with color green. Figure 11 shows a 
quantitative assessment of the classification for the 
region of interest. Here, the same test dataset used for the 
module detection step, comprising 60 instances for the 
module, was used to evaluate the performance of the 
proposed installation identification method. 

Figure 11. The evaluation performance of SIFT-
based classification for region of interest

As shown in the confusion matrix in figure 11, the 
proposed method was able to correctly identify the 
installation of the bath pod on the planned location in the 
detected modular unit with 96% accuracy. 

Analysis of the failed cases reveals that the proposed
method is sensitive to occlusions caused by the presence 

of workers in the evaluation dataset, which lead to false 
positives and false negatives. Additionally, movement of 
the gantry crane and transportation of components such 
as walls, created partial occlusions and resulted in false 
positives due to the similarities between the bath pod and 
the side walls. To mitigate these temporary occlusions,
median-smoothing functions can be used to classify the 
installation based on the median of the neighboring
frames. 

4 Conclusions and Future Work
This research proposed a method to monitor the 

progress of assembly inside modular construction 
factories. The proposed method relies on integration of 
hand-crafted and deep learning-based computer vision
with building information modeling. Specifically, object
detection and instance segmentation were used to 
precisely locate the modular units as they move from one 
station to the next; building information modeling and 
principles from projective geometry were used to identify 
the location of installation, based on the design, and SIFT
template-based matching was used to identify the 
installation of the component in the pre-planned location.
The proposed method was successfully evaluated on 
surveillance videos of a modular construction factory in
the U.S. The major limitation of the proposed method is 
related to cases with high visual occlusion, such as scenes 
where the wall element was installed earlier and occluded 
the bath pod region of interest in the back, and manually 
calculating the homography matrix. To improve the 
proposed method, and overcome this limitation the future
work will focus on improving the performance of 
segmentation using data augmentation and deep learning-
based boundary refinement models; synthesizing the 
camera view using the BIM environment; projecting the 
3D region of interest on the video scene, and classifying 
the region of interest using deep learning-based Siamese
network. Furthermore, future work will consider
automatically computing the homography matrix by 
extracting the points from the masked image without the 
need for user involvement. 
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