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Abstract - 
Building energy model (BEM) creation based on build- 

ing information models (BIM) can save model re-creation 
time during building design phase. However, current BIM- 
to-BEM transformation is at the model level so the BEM 
is re-generated every time when the change happens to the 
BIM. Since design changes happen frequently and the gener- 
ated BEM needs fine-tuning, such model regeneration is still 
time-consuming. Mapping rules between BIM and BEM are 
needed to achieve component level transformation, so that 
only the corresponding part in BEM instead of whole BEM 
are updated when changes happen to the BIM. These map- 
ping rules can be defined explicitly using model transforma- 
tion languages. However, these rule-based transformation 
methods have limitations in scalability. To solve this issue, 
this study proposes a pre-trained language model (PLM) 
based method to construct the mapping relationships be- 
tween BIM and different types of BEM at the metamodel 
level. In summary, we formulate the BIM-BEM mapping 
as a machine translation task and solve it using PLM. For 
evaluation we collected and generated 35 pairs of BIM and 
BEM metamodels, and these metamodels are preprocessed 
into formatted texts that are readable by PLM. The 82% 
matching accuracy is achieved by proposed method which is 
higher than the 61% accuracy achieved by a baseline model 
in previous work. This paper shows the potential to utilize 
PLMs to facilitate the BIM to BEM transformation from BIM 
to a varying type of BEMs at the metamodel level. Future 
work will be focus on the realizing instance-level mapping 
and transformation. 
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1 introduction 

According to the report by International Energy 

Agency[1], the building sector accounted for 30% of 

global energy consumption and 27% of total energy sector 

emissions in 2021. Building energy models (BEMs) are 

utilized to predict energy consumption of the building and 

to improve its energy performance. However, traditional 

way to create BEM has some limitations: firstly, BEM 

modelers need to manually transform or rebuild the build- 

ing geometry [2]. Secondly, the architects and BEM mod- 

elers are relatively separate in traditional BEM creation, 

which causes change conflicts [3, 4] and the discrepancy 

between architectural and thermal views [5, 6]. Therefore, 

building information model (BIM) based BEM modelling 

is proposed by prior studies since it can help automate the 

BEM modelling process so that the cost and re-modelling 

time can be saved [7, 8, 9], for example, Bazjanac [10] 

identified the potential time savings of 75% for creating 

the geometry of small and medium buildings through the 

appropriate application of automated processes. 

Existing studies related to BIM-to-BEM transformation 

[11, 9, 12, 13, 5, 14] mainly focus on how to extract infor- 

mation from source BIM model and convert them into the 

format or description required by target BEM model. This 

BIM-to-BEM transformation process usually happens at 

the model level by generating the new BEM model based 

on the information from the corresponding BIM model. 

However, considering the fact that design changes fre- 

quently happen during the design phase, such model-level 

transformation means that the BEM is regenerated when 

the designer wants to update BEM based on the updated 

BIM, which results in the risk of losing previous BEM 

fine-tuning effort and expert knowledge (Seen Figure 1). 

Therefore, the mapping relationship at the component level 

should be constructed between BIM and BEM to realize 

the updating of necessary part of BEM instead of regen- 

erating the whole BEM model. BIM-to-BEM transforma- 

tion and mapping rules in current studies [15, 16, 17] rely 

on the manual definition with expert knowledge, but there 

are two main limitations. Firstly, existing methods require 

the explicit definition of rules between each class defini- 

tion in BIM and BEM, and hence the number of rules 

needed to be defined is enormous due to large amounts 

of classes defined in BIM and BEM. For example, there 

more than 770 entities in IFC schema [18] and more than 

500 classes in Modelica buildings library [19]. Second, 

different types of BEM, such as EnergyPlus and Modelica, 

are used in practice, and the transformation rules explicitly 

defined are specific to a BEM, so the scalability of these 

methods can be limited. 

To overcome these issues, the research described in this 

paper utilizes an example-based method to learn trans- 

formation rules from pairs of BIM and BEM. Generally 

speaking, the model transformation process happens at 

two levels: instance and metamodel. The transformation 
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Figure 1. Model transformation at model level and component level 

 

at the instance level focuses on the individual instantiated 

components while the one at the metamodel level focuses 

on the transformation between classes defined in the BIM 

and BEM models. Since the metamodels serve as the basis 

for instances, this paper will focus on transformations at 

the metamodel level. The proposed method regards the 

model transformation at the metamodel level as a text-to- 

text task. Therefore, a pretrained large language model, 

T5 (Text-to-text transfer transformer), is adopted and fine- 

tuned to assess the applicability of large language models 

in streamlining model transformation. The input is the 

metamodel of IFC4 files of building systems in JSON for- 

mat, while the output is the corresponding metamodels of 

simulation models, including Modelica models, Energy- 

Plus models and CFD models, in JSON format. In the 

implementation, both the pretrained T5 model and base- 

line model from a prior study [20] are trained and evaluated 

based on the dataset containing 47 pairs of BIM and BEM 

metamodels with more than 2500 tokens. The proposed 

method achieves an accuracy of 84% in the token match- 

ing task on the test dataset, which is higher than the 61% 

accuarcy achieved by the baseline model. This highlights 

the applicability for large language models in helping with 

the model transformation and improving the scalability of 

model transformation between BIMs and various types of 

BEMs at the metamodel level. 

 

2 Related work 

We review the related work in two sub-fields: (1) BIM 

and BEM interoperability; (2) Model transformation in 

software engineering. 

 

2.1 BIM and BEM interoperability 

Based on the coupling relationships between build- 

ing design tools and building simulation tools, current 

BIM-BEM interoperability approaches can be catego- 

rized into three types: centralized, distributed, and com- 

bined [21, 22]. Centralized BIM-BEM interoperability 

approaches utilize a central database, a file format or a 

schema such as BIM and then share it with other simulation 

tools. For example, OpenStudio[23] uses gbXML as the 

central schema, and Simergy [24] uses IFC as the central 

data schema for data exchange and model interoperability. 

Distributed approaches couple pairs of design tool and 

simulation tools through a middleware specific to them so 

that a point-to-point network is created between different 

design tools and simulation tools. The common example 

of using the distributed approach is to import the geom- 

etry model from design tools such as Revit or SketchUp 

to simulation tools such as EnergyPlus through a middl- 

ware. The combined approach usually packages design 

tools and simulation tools together so the models created 

by these tools communicate with each other internally, 

such as IESVE[25]. Compared with the other two types, 

centralized approaches enable high levels of customiza- 

tion, and usability of the central model can vary depending 

on the linked simulation model tools[22, 26]. Because of 

these advavntages, existing studies have largely focused 

on centralized interoperability approaches [15, 27, 28]. 

Therefore, in this paper we focus on the centralized meth- 

ods for BIM and BEM interoperability, and leverage the 

most popular BIM representation, namely IFC [29]. 

Recent studies related to transforming BIMs to differ- 

ent types of BEMs are shown in the Table 1. The column 

of “Unique Requirement” shows the necessary informa- 

tion or data that are required by the transformation from 

BIM to each type of BEM. Meanwhile, items listed in this 

column are not shared by all other types of BEM due to 

the differences between the simulation engine or assump- 

tions adopted by each type of BEM. For instance, the CFD 

model requires the mesh to enable the model creation and 

calculation while others do not [12, 13]. The Modelica, 

as the object-oriented simulation, requires the topology 

between instantiated components[11, 9]. The reviewed 

literature shows that the proposed BIM-to-BEM methods 

in current studies are limited to specific type of BEM mod- 

els. However, practical application facts that various types 

of BEMs are widely adopted means that the BIM to BEM 

transformation method should have enough scalability to 

facilitate the transformation process for lower cost [30, 31]. 

Therefore, the low scalability is one common gap existing 

in the current BIM-to-BEM area. [32] 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

18



Mesh; 

 Table 1. BIM-to-BEM transformation literature summary  

Type Input Output Unique Information Ref. 
 Requirement  

Object-oriented 
Model 

IFC Modelica Topology; [11, 9, 33, 34, 32] 

Computational Fluid 
Dynamics 

IFC OpenFoam 
Space boundary; 

Geometry representation; 
[12, 13] 

Equation-based 
Model 

IFC; 
gbXML; 

IDD; 
EnergyPlus 

HVAC system specification; 
Geometry representation; 
Load information; 

[34, 5, 30, 14, 35] 

 

 

2.2 Model transformation 

Model transformation originates from the software en- 

gineering discipline[36], referring to the process of con- 

verting or mapping a model from one representation to 

another. The model is defined as the abstraction of a sys- 

tem or environment, and it can be a program code, UML 

model, or data schema [37]. The main intended applica- 

tions of model transformation include (1) Model mapping 

or synchronizing at the same level or different levels of 

abstraction [38]; (2) Model evolution or refactoring [39]. 

The model transformation usually consists of three com- 

ponents: source model, target model and transformation 

rule [36, 32, 40]. To enable automatic model transforma- 

tion, several model transformation languages are devel- 

oped to define the transformation rules. Existing model 

transformation languages (MTLs) can be categorized into 

declarative MTL [41, 42], imperative MTL [43], and hy- 

brid MTL[44, 45]. 

Model transformation languages explicitly define the 

transformation rules for each comparable pair of classes 

between source model and target model. However, con- 

sidering the number of classes and entities in BIM and 

different types of BEMs, explicit definition brings high 

cost and limits in scalability [20, 46]. 

A previous study [47] shows that it is easier for experts 

to show transformation examples than to express com- 

plete and consistent transformation rules, so model trans- 

formation by example (MTBE) has since been more thor- 

oughly explored. MTBE approaches can be categorized 

into search-based methods and machine learning based 

methods. The search-based methods regard the MTBE 

as an optimization problem and try to find the optimal 

one in provided mapped pairs [48, 49]. The machine 

learning based methods utilize machine learning models 

to learn the mapping rules based on provided mapped pairs 

[50, 20, 51]. 

The search-based MTBE approaches have limitations 

in requiring the mapping traces or defined transformation 

rules between example pairs, while the machine learning 

based MTBE shows potential to save cost and improve 

scalability without need for mapping traces. 

In summary, two identified issues need to be mitigated 

for automated updating of BEMs. The first one is that 

there is a need to automate the definition of transforma- 

tion rules between BIM and BEM, as this process can be 

time-consuming and costly due to the large number of en- 

tities and classes defined in IFC and the different BEM 

models. The second issue is that these transformation 

rules are specific to the different BEMs adopted in prac- 

tice, including Modelica, CFD and EnergyPlus, requiring 

customization for each case. 

In the next section, we introduce the machine learning 

based approache that we propose to learn the embedding 

mapping rules between BIM and different types of BEM 

at the metamodel level, so that explicit definition of trans- 

formation rules can be avoided and the scalability of the 

model transformation methods can be improved. 

 

3 Method 

This paper focuses on the model transformation at the 

metamodel level. The definition of metamodel and in- 

stances in this paper are the class defined in the schema 

and the entities instantiated from the defined classes re- 

spectively. Instead of directly using the entire schema con- 

taining all classes, we adopted portions of the schema (e.g. 

IFC4 schema [18]) or the class definition (e.g. Modelica 

Buildings Library[19]) as the metamodels. Metamodels of 

BIM and BEM are highly structured with defined classes 

and references among classes, so both of them can also 

be converted into structured text. Therefore, given the 

structured and textualizable BIM and BEM metamodels 

as input and output respectively, the model transformation 

process between BIM metamodel and BEM metamodel 

can be regarded as the text-to-text translation task, which 

is a typical natural language processing (NLP) task. 

Considering the significant progress achieved in pre- 

trained language models (PLMs) in recent years, in this 

paper we adopt a pretrained PLM, namely T5 (Text-to- 

Text Transfer Transformer) [52], as the base model to re- 

alize the transformation between metamodels of BIM and 

BEM. The T5 is an encoder-decoder model pre-trained on 

a multi-task mixture of unsupervised and supervised tasks 
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with the idea of reframing all NLP tasks into a unified 

text-to-text-format, within which the input and output are 

always text strings [52]. Examples of tasks are machine 

translation, document summarization, question answer- 

ing, and sentiment analysis. 

The overview of the T5-based method for model trans- 

formation can be seen in Fig.2. The input of the proposed 

method is the metamodel of IFC, while the output is the 

metamodels of different types of BEMs. All these meta- 

models are created by following the standard schema or 

class definitions that are made publicly available, and they 

are represented in abstract syntax trees (AST) in the JSON 

format. The AST of metamodels follows the binary root- 

children structure which is proven to be effective for code 

translation by Chen et al[53]. The preprocessing block 

converts the JSON format AST of BIM metamodel into 

text, which is then sent to the T5 model. After the text gen- 

eration, the post-processing block converts the generated 

text into JSON format AST of the output BEM metamodel. 

The pretrained T5 model is fine-tuned based on a dataset 

containing pairs of IFC and BEM metamodels, so that the 

implicit rules are learnt. 

 

4 Implementation and results 

To implement our proposed method we first need to 

obtain a robust set of samples to provide as input and 

output to our framework. Specifically, we need a collec- 

tion of metamodel pairs (BIM as input and corresponding 

BEMs as output). Since, to the best of our knowledge, 

this dataset of metamodels does not exist (or at least not 

publicly), we resorted to creating the dataset ourselves 

following standard schemas and online documentation for 

the model class families we used. In particular, we created 

44 metamodel pairs, all stemming from model instances 

representing a specific building system in a commercial 

building at Anonymous Location. The BIM metamod- 

els in the implementation are IFC metamodels, while the 

BEM metamodels are metamodels of Modelica, CFD and 

Energyplus models. 

As mentioned in Section 6, the metamodels of BIM 

and BEMs are converted into text files. The metamodels 

are initially represented using UML because it is suitable 

for visualization and manual operations. Subsequently, 

these metamodels are manually converted into an AST 

format and realized as JSON files for machine readability. 

Finally, we used Python to process these JSON-formatted 

metamodels into text files for tokenization. Figure 3 shows 

this conversion process using an example pair of IfcBoiler 

class and Boiler class in EngergyPlus. The AST of meta- 

models are created based on the metamodels visualized in 

the UML format, then the JSON formatted AST of meta- 

models are converted into plain text following given rules. 

Following above procedure, we created 44 pairs of BIM 

 

 Table 2. Implementation configuration  
 Item Value  

Adopted model  T5-small (60 million parameters) 

Baseline LSTM encoder-decoder model [20] 

Number of epochs 100 

Batch size 4 

Learning rate 0.002 

Train dataset 1500 tokens, 30 model pairs 

Test dataset 660 tokens, 7 model pairs 

 Validation dataset 680 tokens, 7 model pairs  

 

 

and BEM metamodels (Accessed through this link) di- 

vided them with the ratio of 70%, 15%, and 15%. The 

resulting training dataset contains 30 model pairs with 

around 1500 tokens, while both the validation and test 

dataset contain 7 model pairs with more than 650 to- 

kens. As for the implementation of the pretrained language 

model, the T5-small model from HuggingFace transformer 

API [54] is adopted as the base model, then it is fine-tuned 

based on the collected metamodel pairs. The model train- 

ing process is implemented under Google Colaboratory 

environment with 100 training epochs. Meanwhile, as a 

baseline, we benchmark against a LSTM neural network 

model from a previous study [20]. The baseline model 

also comprises the encoder-decoder architecture, but the 

encoder and decoder are implemented with a single-layer 

LSTM network [20]. A summary of the implementation 

configuration is shown in Table 2. 

The implementation results are evaluated by the accu- 

racy of token matching on the test dataset. Given the 

input BIM metamodel and target BEM model type, the 

fine-tuned pretrained large language model generates the 

corresponding metamodel of BEM, then the accuracy is 

calculated by: 

𝐴𝑐𝑐 = 
𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 

𝑁𝑡𝑜𝑡 𝑎𝑙 

where 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is the number of matched token pairs, 

𝑁𝑡𝑜𝑡𝑎𝑙 is total the number of token pairs. As shown in the 

Table 3, when the pretrained T5-small model is trained af- 

ter 100 epochs, the accuracy of token matching on the test 

dataset is around 82%, while the baseline model achieved 

61% accuracy. Figure 5 shows examples of token match- 

ing results. The tokens highligted in bold are mismatched 

pairs. The mismatched pairs can be due to the type of 

attribute value or the name of attributes belonging to the 

given class. 

 

5 Discussion 

As shown in the previous section, our T5 pretrained 

model achieved an 82% token matching accuracy in the 

test set, which is higher than 61% accuracy achieved by the 

baseline model from [20]. This result points to the promise 
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Figure 2. Proposed example-based model transformation method 

 

 

 

Figure 3. Workflow of converting the metamodels to text files 

 

 

 

Figure 4. The workflow of LSTM based model transformation method from [20] as the baseline 
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Figure 5. Examples of token matching results 

 

 
 Table 3. Evaluation result on test dataset  
 #Epoch Metric Proposed Baseline  

structure in plain text (AST). However, in the model pre- 

diction results, the generated “flowCharacteristics3” ap- 

30  Accuracy of 
tocken matching 

100 Accuracy of 

0.21 0.22 

 
0.82 0.61 

pears at the position of “res2” in the ground-truth. Since 

token matching is performed based on sequential posi- 

tions, this pair is considered mismatched. One possible 

 tocken matching  

 

 

of using model-based MTBE methodology to automate 

model transformation between BIM and BEM. In particu- 

lar, it shows that we may not need domain-specific expert 

knowledge to define every transformation rule among en- 

tities and classes in the metamodels of BIM and BEMs. 

Concurrently, the incorporation of metamodels from three 

types of BEM within the training and testing datasets high- 

light the capability of the trained algorithm to fulfill the 

practical application demand of transforming the BIM into 

multiple types of BEM. 

That said, the results also highlight that there are short- 

comings to this method. Though we did not conduct ex- 

periments to fully characterize the failure casses, we can 

hypothesize about the possible reasons for the mismatched 

pairs of tokens highlightened in Figure 5. For example, 

as the examples in the figure show, the errors could be 

attributed to the characteristics of the training dataset and 

the representation format of metamodels. Firstly, for the 

mismatched pair of “eal” and “Num” in Example 2, these 

tokens stand for the data type of the attribute in those 

classes. In the training dataset, the occurence frequency 

“Num” surpasses 80%, while the “Real” accounts for less 

than 10% of the total number of tokens representing at- 

tribute data type. As a result, the model tends to predict 

the “Num” with higher probability. To mitigate this issue, 

diversifying the data sources can be explored to prevent 

the dominance of a specific data value in the dataset. Sec- 

ondly, for the mismatched pairs of “res2”, “flowCharacter- 

istics3” and “res1” in Example 3, all of them are attributes 

of class Valves.ThreeWayTable in Modelica Buildings li- 

brary. Lastly, as mentioned in Sections 6 and 4, the tree 

structured metamodel is represented using a sequential 

solution for this issue is to improve the representation for- 

mat of the tree structure of metamodels in text file to avoid 

the impact of altered sequential positions of predicted to- 

kens. 

One significant difficulty met in the implementation of 

the proposed method is the acquisition and collection of 

data. There is a lack of open-source repositories providing 

metamodels of different types of BEMs, so the metamod- 

els in the dataset were manually constructed by the authors, 

adhering to the online standard data schema and official 

documents. This limited dataset potentially exerts an im- 

pact on the performance of the fine-tuned large language 

model. 

A further limitation of the PLM-based approach for 

BIM-to-BEM transformation pertains to the intricacies of 

instance-level transformation and mapping. This process 

necessitates the intricate alignment of specific attribute 

values of instances in BIM and BEM. However, these 

attribute values may exhibit randomness or be heavily in- 

fluenced by contextual factors, leading to a scenario where 

the dataset collected for model fine-tuning does not cover 

all potential attribute values. For example, when con- 

sidering a BIM-BEM pair that includes multiple room 

instances, these room instances vary in attributes such as 

their names, volumes, locations, and topological relation- 

ships with other instances. To address the challenge of 

instance-level transformation, one viable strategy involves 

the integration of constraints and rules that are specifically 

tailored to the attribute values. This approach would fa- 

cilitate the transformation of instances with attribute val- 

ues, from one instance from BIM to the other instance 

from BEM, after the instance class have been initially 

filtered through the metamodel transformation results de- 

rived from the PLM-based method. 
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6 Conclusion 

Existing methods for model transformation between 

BIM and BEM are circumscribed in terms of cost and scal- 

ability. To mitigate these issues, this paper starts from the 

model transformation process at the metamodel level, and 

conceptualizes it as a text-to-text translation task. Subse- 

quently, the pretrained large language model based MTBE 

approach is proposed to actualize the automated BIM to 

BEM model transformation at the metamodel level. To 

best of our knowledge, this paper is the first to apply the 

large language model based methods in the research area 

of BIM to BEM transformation. The implementation re- 

sults envince the feasibility of the proposed method for 

BIM to BEM transformation. The contribution of this pa- 

per resides in (1) highlighting the applicability for large 

language models in helping with the model transformation 

and (2) improving the scalability by enabling the model 

transformation between BIM and various types of BEMs. 

To mitigate the issues of mismatched pairs observed the 

implementation result, the future work will focus on diver- 

sifying the data sources and improving the representation 

of metamodels in plain text. Meanwhile, the PLM-based 

method proposed in this paper is primarily concentrated 

on transformations at the metamodel level. Nonetheless, 

it encounters limitations when applied to transformations 

at the instance level, due to the necessity of converting 

specific attribute values for individual instances. Conse- 

quently, future work will be investigating methodologies 

for the incorporation of constraints and rules. This is 

aimed at facilitating the conversion of attribute values per- 

tinent to instance-level transformation, thereby potentially 

enhancing the efficacy and applicability of the PLM-based 

approach in more complex, attribute-specific scenarios 

within the BIM to BEM transformation at all levels. 
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