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Abstract – 

Within the scope of additive manufacturing of 

structural concrete components, the integration of 

reinforcement provides an inevitable opportunity to 

enhance the load bearing capacity of the components. 

Besides the rebar integration itself, ensuring as-

planned concrete cover is key to achieve a stable and 

long-term legally permissible integration. The 

thickness of the as-built concrete cover however is 

unpredictably altered during printing by the varying 

material behaviour of the printed concrete. In 

addition, the lack of opportunities to anchor 

reinforcement elements before printing can lead to a 

displacement of reinforcement during printing. In 

this publication, we present an approach for 

determining the position of reinforcement elements 

within additively manufactured components without 

post-process measurement steps. During the printing 

process, RGB images and depth camera data are 

recorded by a camera mounted to the print head. 

Subsequently, a neural network is employed to 

distinguish between reinforcement structures and the 

deposited material within the coloured image. By 

overlaying the colour image data with the depth 

information a 3D point cloud is generated, within 

which the reinforcement is marked. 
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1 Introduction 

In the context of concrete component manufacturing, 

the integration of reinforcement is essential for the 

generation of tensile strengths [1]. To achieve 

comparable loadbearing capabilities with additively 

manufactured components, reinforcement elements must 

also be integrated during 3D printing processes [2]. 

Initial reinforcement strategies for additive 

manufacturing are presented by Kloft et al. [3]. Aside 

from the mere integration during the printing process, an 

additional challenge lies in ensuring and providing proof 

of accurate positioning of the reinforcement [4]. 

Evidence is required not only to comply with and fulfil 

legal guidelines but, also for planning potential post-

processing steps and guaranteeing component stability. 

There are two challenges in providing this evidence. At 

first, additional process steps should be avoided, so it is 

advisable to opt for inline data recording during printing. 

Second, additive manufacturing processes based on 

concrete generally present a contaminated environment, 

so robust data acquisition should be emphasized in this 

case. 

In this publication, we present an approach for the 

fully automatic determination of the reinforcement 

position within additively manufactured components. 

Therefore, we record and evaluate image data during two 

large-scale 3D printing processes with a sensing unit to 

observe the process and to identify the integrated 

reinforcement. To distinguish between printed concrete 

and the integrated reinforcement within the recorded 

images and data, we propose and prove the applicability 

of convolutional neural networks (CNN). In section 2, we 

first describe the state of the art regarding reinforcement 

integration and detection. Section 3 explains our 

methodological approach, while section 4 outlines the 

description of the experimental investigations. Section 5 

addresses the results, and section 6 covers the summary 

and outlook. 

2 Related Work 

Within this section, we first address the strategies for 

reinforcement integration during concrete 3D printing 

processes. This allows us to derive boundary conditions 

for the data acquisition, e.g. environmental influences 

such as the degree of air pollution influencing the 
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captured data quality, the required data, and image 

resolution to detect the reinforcement or the expected 

colour contrast between material and reinforcement. 

Afterwards, we evaluate state of art sensing approaches 

for their suitability and efficiency for the reinforcement 

determination task during 3D printing processes. Finally, 

we present research on potential methodological 

approaches and challenges to evaluate the recorded data. 

2.1 Reinforcement Integration and boundary 

conditions for sensing 

According to Pacillo et al., [5], most additive 

manufacturing processes in construction can be 

categorized into extrusion-based, binder jetting, or 

powder bed-based methods. Most of these processes 

occur without significant dust emission, leaving no 

special constraints to consider for integrating sensors in 

most cases. However, Shotcrete 3D Printing (SC3DP), 

developed at ITE TU Braunschweig [6], belonging to the 

extrusion-based processes, generates a considerable 

amount of contamination due to the concrete jetting. This 

additional challenge prompts us to utilize SC3DP as the 

most demanding printing process for reinforcement 

detection. Thus, we aim to develop a sensing approach 

that works even in such demanding conditions. The 

process is illustrated exemplarily in Fig. 1. 

 

Figure 1. Shotcrete 3D Printing (SC3DP) at the 

DBFL of the ITE TU Braunschweig including 

short reinforcement bar insertion, as proposed by 

Dörrie et al. [7], and a 2D laser profiler running 

ahead of the printing nozzle. The goal of our paper 

is the detection of the depicted type of 

reinforcement elements. 

In addition to the influences arising from the additive 

manufacturing process itself, the various options for 

reinforcement integration have different impacts on the 

to be-chosen measurement approach. Classen et al. [8] 

provide a brief overview of currently developed 

reinforcement strategies for additive manufacturing 

processes. All strategies can be divided according to the 

usage of flexible reinforcement e.g. textile fibres [9], or 

stiff reinforcement such as pre-manufactured steel 

meshes [10], short steel rebar pieces [11] or welding-

while-printing utilizing wire-and-arc-additive-

manufacturing (WAAM). In all cases, the diameter of an 

individual reinforcement bar is in the range of a few 

millimetres, allowing this to be considered as the desired 

sensor resolution. 

2.2 Inline Sensing 

For the examination of the position and condition of 

reinforcement bars within a conventionally cast 

component, various measurement methods exist [12]. In 

addition to X-ray imaging [13], for example, ultrasound 

[14] provides a different approach. These common 

methods share the commonality that only small areas are 

captured, and the examinations are carried out on the 

finished component. 

However, in the context of additive manufacturing, 

there is the option to acquire data during the layer-by-

layer construction process, eliminating the need for an 

additional measurement step. For inline measurement 

and recording during additive manufacturing processes, 

generally, three types of sensors are used. Wolfs et al.[15] 

utilized a 1D time-of-flight sensor to measure the nozzle-

to-strand distance while printing. Yet, purely one-

dimensional information is insufficient for the detection 

of (3D) reinforcement elements. An early method for 2D 

data recording is described by Doumanidis et al. [16], 

using a line laser and a CCD camera to record 2D profiles 

of the printed strand. An advanced setting is described by 

Xiong et al. [17], who use a similar CCD camera aside 

from a welding setup to generate image data of the 

process. Lindemann et al. [6] fundamentally transferred 

such 2D approaches to concrete additive manufacturing. 

Fig. 2 shows 2D profile data, recorded during SC3DP. 

The presence of slight elevations within each profile 

suggests the potential existence of reinforcement 

structures, see Fig. 1, at these points. However, it is 

important to note that a definitive identification is not 

achievable. 

More meaningful data can be generated through the 

use of coloured images and three-dimensional 

measurements. A 3D data-gathering approach is 

presented by Kazemian et. al. [18]. The authors utilized 

a nozzle-mounted camera to surveil a concrete additive 

manufacturing process gaining 3D images at each layer. 

The images are evaluated to detect over- or under-
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extrusion for layer width adjustment. Since 3D data, 

especially in combination with colour images, provides 

the highest information content for detecting reinforcing 

elements, we choose a colour and depth camera as the 

most suitable sensor technology. 

 

Figure 2. Three 2D profiles recorded during 

SC3DP at ITE TU Braunschweig. The slight 

elevations, marked in red in the data, could be part 

of reinforcing elements, but an explicit 

identification is not possible. 

2.3 Data Evaluation 

In the context of data analysis, there are 

fundamentally two approaches available for image data 

sets. On the one hand, mathematical methods such as 

Canny edge detection [19] or thresholding can be 

implemented. On the other hand, machine learning such 

as convolutional neural networks is suitable for the 

examination of image data recorded during additive 

manufacturing [20]. Previous related work has not yet 

conclusively shown which method is more effective. We 

intend to investigate this topic in this work. The 

following chapter takes a closer look at the individual 

methods. 

3 Methodology 

From the state of the art, we derive the necessity to 

determine the position of reinforcement elements within 

additively manufactured components. For this purpose, 

we implement a robust measurement technology which 

provides meaningful data through colour and depth 

images. The data is evaluated through mathematical 

methods and neural networks. The results provide 

insights into the more suitable approach. Therefore, we 

have designed a four-stage algorithm, including the 

following steps: 

1. Depth and color image recording by running a 

camera ahead of the printing process. 

2. Identification of rebar pixels within the colored 

image. 

3. Extracting the correlated rebar pixels from the 

depth image to gain 3D information on rebar 

positioning. 

4. Transforming the depth image into the robot 

workspace to generate an as-built model. Use a 

colour contrast to mark rebar elements. 

To implement this approach, we first developed a module 

for the acquisition of inline image data. 

3.1 Data acquisition 

For inline data acquisition in the context of large-

scale additive manufacturing processes based on concrete, 

we developed a dedicated multi sensor-measuring system. 

As shown in Fig. 3, this consists of an Intel RealSense 

D435 for colour and depth image recording. This data is 

used, as proposed previously, for reinforcement detection. 

A Raspberry Pi 4 is added to the system for data 

processing, a Wi-Fi module for data transmission and 

communication with the printing robot, and batteries 

ensure the power supply. All of these components are 

attached to a 2Dlaser profiler. The data of the profiler is 

utilized in parallel for online control of the printed strand 

width and height. The whole system runs ahead of the 

printing nozzle and is rotated by a stepper motor. The 2D-

laser profiler and our online strand control approach are 

described in detail in our previous work [21]. 

 

Figure 3. Sensor-module for image processing 

during 3D printing. 1) power supply 2) Raspberry 

Pi 4 for data processing 3) Intel RealSense D435 

camera 4) Keyence 2D-laser profiler for 

additional online control 5) Slip ring and gearing 

for 360° endless rotation 6) printing robot 

3.2 Selection of a data processing approach 

To compare the two data evaluation approaches, 

mathematical methods and machine learning, and further 

develop the more beneficial one in the context of more 

extensive research, a test image was captured. Fig. 4 

shows the test image which contains a printed strand of 

PU foam. 
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Figure 4. 3D printed PU-foam strand with inserted 

short reinforcement bars marked by red circles. 

PU foam is used as a substitute material instead of 

concrete and was already determined to be a suitable 

substitute for concrete printing process investiagations in 

previous process-related experiments. Short 

reinforcement bars (diameter 15mm, length 150mm) 

were inserted into the foam during printing. The strand 

dimensions are approximately 10 cm in width and 2 cm 

in height, closely resembling the concrete-based SC3DP 

process shown in Fig. 2. Printing and data collection are 

performed at the additive manufacturing test bench at the 

Institute of Assembly Technology and Robotics. The test 

rig is shown in Fig. 5. In this figure, the light colour of 

the PU-foam is visible. The PU-foam is occasionally 

darkened during the printing process using spray paint to 

reduce the colour contrast, resulting in the colour 

depicted in Fig. 4. 

In an initial approach, we attempt to identify the 

reinforcing elements by detecting circular and angular 

characteristics using the mathematical method [19]. The 

first step of identifying the reinforcement bars using the 

mathematical approach is to detect the edges using Canny 

Edge Detection. In the second step a Hough 

transformation is performed, to search for circles and 

lines. Fig. 6 shows the subsequent algorithms’ outputs. 

As a result, a multitude of arbitrary circles is recognized, 

making further development seem impractical. 

A likewise unpromising result is observed when 

implementing thresholding methods for edge 

identification. Depending on the limit settings, either too 

many or no edges are detected. Consequently, we 

proceed to use convolutional neural networks (CNN) in 

further development. In particular, we train and utilize 

YOLOv8 [22]. 

4 Experimental data and CNN training 

For the CNN training and validation, three different 

types of images are captured. The types are grouped as 

 

Figure 5. Foam printing test bench at Institute of 

Assembly Technology and Robotics. 1) printing 

robot 2) printing head including nozzle and slip 

ring 3) material supply 4) sensor-module 5) 

printed column with colouring and rebar 

integration 

 

Figure 6. Canny edge detection and Hough 

transformation applied to a process image of PU-

foam printing including short rebar insertion. 

Only the circle labelled with one correlates to a 

real rebar. 

as follows: 

1. sharp: The first set of image data was captured 

statically above the PU-foam column shown in Fig.  

2. blurry: The second set of image data was captured 

during the printing of the PU-foam column. Due to 

the printing motion, this data contains motion blur. 

3. Concrete: The last set contains image data captured 

at TU Braunschweig during a Shotcrete 3D printing 

process as shown in Fig. 1, used for validation only. 

The advantage of using statically recorded data, as 

within the data set ”sharp”, of existing objects is that no 
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active printing process is needed. Therefore, an arbitrary 

number of training data can be generated without 

material wastage. As shown in Fig. 7, motion blur 

appears during the printing process. Such images are only 

part of the data set ”blurry”. Two identical YOLOv8 

CNNs were trained and validated to determine whether 

the training set ”sharp” without motion blur is suitable. 

The training of both networks ran for 150 cycles, each 

with 640 pre-labelled images. For validation, 59 images 

were used. Each image set contains 31 images with short 

reinforcement bars. The validation datasets for both 

networks include 50% of blurred images, as these occur 

during the printing process. The detection accuracy of the 

network trained with blurred data is ultimately 66%. The 

network without blurred data is close to 0%. Training 

data without blur is therefore insufficient. 

 

Figure 7. Image recorded with a static robot after 

printing (left), image recorded during the printing 

process (right) 

5 Results 

After training the networks and validating the net 

trained with blurred data, testing is carried out within the 

scope of the PU-foam printing processes. Fig. 8 depicts 

the top layer of a second manufactured column with 

incorporated reinforcement 

 

Figure 8. Printed and coloured PU-foam column 

for evaluation. The rebar was added to the last 

layer and the camera was moved along the 

printing trajectory over the surface for one full 

circle. Movement speed was set to 100mm/min 

Images were captured and evaluated with a frequency 

of 0.5 Hz using the trained network on the Raspberry PI 4. 

After identification of the rebar pixels, labelling is 

transferred to the depth image, and the depth image is 

transformed into the robot’s workspace. Fig. 9 shows the 

assembled and transformed data from all recorded and 

labelled images. 

 

Figure 9. Depth camera data combined to a single 

point cloud by using the transformation into the 

robot base coordinate system. Data points 

identified as rebar are marked in red. 

Within the image, the data points recognized as 

reinforcement are been marked in red colour. It is evident 

that all reinforcing bars were detected in at least one 

image, and thus, there exists a portion of red data points 

for each bar. Furthermore, it can be seen that there are 

green data points between the red ones, indicating that in 

some images, the reinforcing bar was not recognized. 

This correlates with the 66% accuracy achieved in 

section 4. Such low accuracy, however, is tolerable since 

multiple images are recorded and evaluated per 

reinforcement bar. The quantity of available images 

depends on three factors: the feed rate, the image size, 

and the data processing speed. In our applications, one 

reinforcement bar is visible within three images each. 

With an individual image accuracy of 66%, the overall 

probability of not recognizing a rod is as low as 4%. After 

successful identification during the experiments 

conducted with PU foam, the sensor module was used 

during the SC3DP. Fig. 10 shows the images marked by 

the same neural network. 

 

Figure 10. Images recorded during SC3DP 

evaluated by the trained CNN to label the inserted 

short rebars. 
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Basic recognition of the reinforcing bars is possible 

without training the network with additional data from 

the concrete process. However, it is evident that the 

detection accuracy further decreases. This results in clear 

visible bars (see fig. 10 bottom left) being no longer 

recognized by the net. 

6 Conclusion & Outlook 

Inline identification of reinforcement during additive 

manufacturing processes provides an efficient means to 

obtain as-built data of a manufactured component 

without an additional process step. Especially for the 

verification of, for example, concrete cover or for 

planning subsequent post-processing, these data provide 

a solid foundation. In the course of our work, we first 

developed a module for recording such data. Furthermore, 

an approach for systematic evaluation was presented, 

tested and validated in two different production processes. 

While the presented approach represents a functional 

methodology for the identification and localization of 

reinforcement elements during printing, the following 

basic statements can be derived. Typical for the use of 

neural networks, and this also applies to the proposed use 

case, is the relevance of good training data. It turns out 

that the mere use of post-printing process images is not 

sufficient to achieve adequate classification during the 

printing process. The experimental investigations also 

show that mediocre classification quality can be partially 

compensated for by high-frequency recording and 

evaluation of the image data. Such oversampling is 

limited by the capabilities of the Raspberry Pi 4 in our 

case. A limitation in the use of the methodology also 

results from the need for a wireless network for data 

transmission, which may not always be available for 

onsite construction. The system is also not yet dust and 

waterproof in its current state. In the context of future 

research, we aim to further investigate the accuracy of the 

recorded data to determine the applicability for the 

generation of quality inspection documentation. 

Additionally, we need to evaluate additional network 

architectures regarding their resulting detection accuracy 

to improve robustness. 
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