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Abstract -
The construction industry can benefit greatly from in-

creased automation in construction processes in terms of pre-
cision, time, and labor costs. This is especially true for pre-
fabricated construction for either new buildings or envelope
retrofits. Here, prefabricated components are manufactured
offsite according to design specifications and installed on-
site. Accurate information on the component’s position and
orientation (pose) is needed to achieve this. A tool named
“Real-Time Evaluator” (RTE), designed to autonomously
track prefabricated components as they are being installed
and provide real-time installation instructions, is currently
under development using a single robotic total station. This
is challenging since at least three points are needed to de-
termine the pose of an object in space. To achieve this goal
with a single robotic total station, two key algorithms were
developed: (1) the “resection” algorithm aligns the digital
twin with the physical twin regardless of the location of the
total station, and (2) the “transformation” algorithm gives in-
structions of translations and rotations to installers to achieve
the desired installation pose. The algorithms were evaluated
experimentally on a lab-scale demonstration. Results show
that the resection algorithm achieved an average error of
< 3.1 mm, while the transformation algorithm predicted the
rotation angle along a single axis with an error of < 0.5◦.

Keywords -
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tation; Accuracy

1 Introduction
Building construction requires a high degree of accu-

racy between as-designed and as-built structures, which is
challenging given the long project duration, heavy reliance
on workers’ skills and experience, and complicated onsite
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environments (e.g., crane operators not being able to see
the load all the time). For prefabricated construction, not
meeting the required tolerances during the installation of
prefabricated components often requires expensive cor-
rections. Therefore, a tool is needed to actively check the
quality of construction during the installation of prefabri-
cated components for real-time installation instructions.

Rapid advances in surveying technologies present a
great potential for automating construction processes.
Robotic total stations can autonomously turn their tele-
scopes and aim at targets by following commands from
software, enabling fast and precise measurement and track-
ing with little user input. Three-dimensional (3D) laser
scanners can produce point clouds to provide reality cap-
ture, including as-built information during or after con-
struction [1]. While commercially available, these instru-
ments need a streamlined procedure to interact with (1)
data in the digital space, (2) the building structure and
prefabricated components in the physical space, and (3)
the users or construction workers.

The Real-Time Evaluator (RTE) is a tool that uses a
single robotic total station to gather the data needed to
compare the actual position of a prefabricated component
against the as-designed position in a digital twin during
installation in order to provide real-time feedback to in-
stallers [2]. Two major tasks were identified during the
development of the RTE. The first task is to align the 3D
model of a building (i.e., digital twin) with the physical
twin. When the total station is set up to obtain an ini-
tial scan of the building, track the installation process of
prefabricated components, or obtain an as-built scan of
the building, it will most likely have different positions
and orientations in each session. Moreover, the digital
twin may be obtained from a 3D laser scanner, building
information modeling (BIM) software, or computer-aided
design (CAD) software foreign to the total station [3].
Thus, discrepancies can exist between the coordinate sys-
tem of the digital twin and the coordinate system of the
total station in its current setup, which prevents the RTE
from giving correct real-time installation instructions. A
resection function is available in software such as Trim-
ble® Access™ and Leica® Captivate™ to determine the
coordinates of the total station based on the Helmert trans-
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formation [4]. However, the available third-party software
does not use the digital twin as input to adjust the coordi-
nate system of the total station accordingly. Therefore, it
is necessary to develop a resection algorithm that uses the
digital twin in an arbitrary coordinate system as input to
achieve accurate RTE installation commands.

The second task involves generating optimal installa-
tion instructions to move a prefabricated component from
its current pose to the intended (goal) pose. While prior
research has focused on pose estimation of the crane and
load [5] or deviations of the current pose from the as-
designed pose [6], less attention has been directed to re-
constructing a component pose by tracking targets attached
to it. The installation time of prefabricated components
could be notably reduced by explicitly specifying the steps
to move them directly to the goal pose, eliminating the need
for trial-and-error placement. Such steps need to consider
six degrees of freedom in the movement of a rigid body,
i.e., the translations along the three Cartesian coordinate
axes and the rotations around such axes. The trajectory is
not unique and needs to be tested and optimized based on
various factors including the initial and final poses of the
component, the center of rotation, rotation axes, and the
connectors on the building structure.

While the conversion between coordinate systems and
the transformation of rigid bodies are not new mathemati-
cal problems, they are new tasks for automating the prefab-
ricated construction because the procedures, requirements,
and available tools need to be considered as constraints.
To address the above two tasks, this paper develops a re-
section algorithm to align the digital twin with the physical
building within measurement error. This paper also devel-
ops a transformation algorithm that applies a rigid-body
transformation to a component in order to achieve a goal
pose with a series of translations and rotations around
three axes. Accuracy of the algorithms are obtained from
lab-scale experiments.

2 Methodology
This section first outlines the algorithms for resection

and rigid-body transformation. Subsequently, it describes
the lab-scale experimental setup used to demonstrate and
evaluate these two algorithms.

The two algorithms, in essence, solve the same problem.
The resection algorithm computes the rotation and transla-
tion of points from one coordinate system to another. The
transformation algorithm computes the rotation and trans-
lation of points when they move in the same coordinate
system. In both algorithms, the method used to calculate
the rotation matrix between two sets of at least three points
is the Kabsch or the Kabsch-Umeyama algorithm [7]. It
uses the singular value decomposition (SVD) to find the
rotation matrix that best aligns the two paired sets of points.

Figure 1. Workflow chart for Algorithm 1: resection.

It was implemented through the “align vectors” func-
tion in the SciPy library in Python [8]. When the number
of points is two, the Euler–Rodrigues formula was used
to align the vector formed by the two points [9] and was
fulfilled in this paper with a user-defined function.

2.1 Resection

Let CPold be the set of three or more control points
measured in the original (old) coordinate system. Let
CPnew be the corresponding set of control points measured
in the new coordinate system. Finally, let DTold be the
set of all the points in the digital twin. The algorithm
that adjusts DTold and total station orientation to align the
digital twin with the physical twin using CPold and CPnew
is described in Algorithm 1 and shown in Figure 1. It has
the following four steps.

First, the translation vector 𝒕 and rotation matrix 𝑅 are
calculated such that, for any point in the new coordinate
system 𝑃new, the corresponding point in the original coor-
dinate system is calculated as 𝑃old = 𝒕+𝑅𝑃new. This deter-
mination is based on the measurements of control points
by the total station at both the original and new setups. The
measured coordinates of the control points are re-centered
around their centroid in the original (𝑮old) and new (𝑮new)
coordinate system, respectively. The re-centered control
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Algorithm 1: resection: align digital twin with
physical twin

Data:
CPold, CPnew, DTold

Result:
𝒕, 𝐴𝑧, DTadjusted

// Calculate rotation matrix and translation
vector
𝑮old← centroid(CPold)
𝑮new← centroid(CPnew)
cpold← normalize(CPold − 𝑮old)
cpnew← normalize(CPnew − 𝑮new)
𝑅← Kabsch(align cpnew to cpold)
𝒕 ← 𝑮old − 𝑅𝑮new

// Calculate azimuth
𝒋old ← 𝑅 𝒋new
proj𝑥𝑦 ( 𝒋old) ← project xy( 𝒋old)
𝑅𝑥𝑦 ← Euler-Rodrigues(align 𝒋new to
proj𝑥𝑦 ( 𝒋old))
𝐴𝑧← 𝑧 component of factor(𝑅𝑥𝑦) in degrees
if 𝐴𝑧 < 0 then

𝐴𝑧 ← 360 + 𝐴𝑧
end
// Total station commands
total station.turn to angle(𝐴𝑧 × 𝜋

180 )
total station.set orientation()
// Adjust digital twin
DTadjusted = DTold − 𝒕

return DTadjusted

points are normalized to unit vectors (cpold and cpnew).
Such vectors are then used as inputs to the Kabsch al-
gorithm to obtain the rotation matrix 𝑅. The translation
vector is calculated as the difference between the centroid
in the original coordinate system and the one measured in
the new coordinate system and rotated by 𝑅 as follows:
𝒕 = 𝑮old − 𝑅𝑮new.

Then, the rotation matrix is used to calculate the az-
imuthal angle (𝐴𝑧) for the total station to turn to the same
north (𝑦-axis) as in the original coordinate system. Note
that only the horizontal angle is needed since the total sta-
tion is set to level before each use, which results in the
𝑥- and 𝑦-axes always forming a horizontal plane within
machine tolerance. Let 𝒋new =

[
0 1 0

]
be the 𝑦 basis

vector with respect to the new coordinate system. Then,
the 𝑦 basis vector of the original coordinate system is ob-
tained as follows: 𝒋old = 𝑅 𝒋new. The resulting vector is
then projected to the horizontal 𝑥𝑦 plane: proj𝑥𝑦 ( 𝒋old),
which is used to compute the rotation matrix of 𝑦-axis on
the 𝑥𝑦 plane using the Euler–Rodrigues formula. The re-

sulting rotation matrix (𝑅𝑥𝑦) is factorized into a sequence
of Euler angles around the 𝑦-, 𝑥-, and 𝑧-axes using the
user-defined function [10], which always leads to zero
angles around the 𝑦- and 𝑥-axes.

The angle around the 𝑧-axis (𝐴𝑧) is sent to the total sta-
tion to command it to turn to 𝐴𝑧 and reset north. Note that
this angle is the counterclockwise rotation of the original
coordinate system to the new one, so the new frame should
be turned by the same angle clockwise to align with the
original north.

Finally, the original digital twin points are adjusted
by the translation. Now the points in the digital space
(DTadjusted) have the same coordinates as measured by the
total station in its current position and orientation.

2.2 Rigid-body transformation

The movement of solid prefabricated components is
considered a rigid-body transformation. By rigidly at-
taching prisms as reflectors at a known distance from the
external corners of the component, the pose of the compo-
nent can be determined with a total station by measuring
the location of at least three prisms. Let 𝑃𝑛

curr (𝑡) be the
set of current coordinates of 𝑛 prisms at time 𝑡 and 𝑃𝑛

goal
be the set of corresponding prisms at the goal pose, for
𝑛 ≥ 3. An automated workflow was developed to achieve
the targeted component pose by transforming 𝑃𝑛

curr (𝑡) into
𝑃𝑛

goal, as described by Algorithm 2 and shown in Figure 2.
The center of rotation is important for determining the

correct translation. The center of rotation can be any point
that moves in the same way as the component, e.g., the
center, one corner, or the bearing point of the component.
In the local coordinate system of the component, and in
the case where there are 𝑛 = 3 prisms, the basisB(𝑃𝑛) can
be created using the three prisms, i.e., two vectors formed
by three prisms and one vector normal to the plane formed
by the three prisms. The center of rotation is then cal-
culated as a linear combination of the three basis vectors
as follows: 𝑮 = B(𝑃𝑛)𝒈. By doing this, the coefficients
𝒈 of the linear combination in the component coordinate
system are independent of the component pose and the
global coordinate system set by the total station, in other
words, 𝒈 is constant and independent of time. The coef-
ficients can be determined by referring to the component
design drawing or conducting an initial measurement of
the three prisms and the center of rotation using the total
station. Then the coefficients 𝒈 can be used to compute
the coordinates of the center of rotation using 𝑃𝑛

curr (𝑡) and
𝑃𝑛

goal, which is the first step in Algorithm 2.
Next, the rotation matrix 𝑅(𝑡) is computed with the

Kabsch algorithm after the measured prisms at the current
and goal poses are re-centered around their respective cen-
ter of rotation and then normalized. The translation vector
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Figure 2. Workflow chart for Algorithm 2: transfor-
mation.

𝑻 (𝑡) is calculated as the difference between the centers of
rotation of the goal and current poses.

Finally, the Euler angles around the 𝑥, 𝑦, and 𝑧- axes
in a Cartesian coordinate system set by the total station
are computed from the rotation matrix 𝑅(𝑡). The order
of the rotation affects the Euler angles, so it needs to be
specified. In Algorithm 2, the rotation matrix is factorized
into three Euler angles in the order of 𝑦-axis, 𝑥-axis, and
𝑧-axis, similar to Algorithm 1 [10]. Therefore, the rota-
tion is expressed as a composition of sequential extrinsic
rotations about axes 𝑦, 𝑥, and 𝑧 with angles 𝛼(𝑡), 𝛽(𝑡), and
𝛾(𝑡), respectively.

2.3 Lab-scale experiments

The algorithms for resection (Algorithm 1) and trans-
formation (Algorithm 2) were tested using the Leica Nova
MS60 Multi-Station on a lab-scale setup. The shortest
measuring distance between the multi-station and reflec-
tor target is 1.5 m, while the longest distance varies from
200 m to 10000 m depending on the reflector type and
atmospheric conditions. The measuring accuracy can be
decreased by haze, sunlight, heat shimmer, beam inter-
ruptions, and moving objects within the beam path. The
multi-station should be set up in such a way that the beam
can reach the reflective part of the target.

The algorithms were written in Python and interfaced
with the multi-station using a Bluetooth connection and

Algorithm 2: transformation: convert current
pose to goal pose
Data:
𝑃𝑛

curr (𝑡), 𝑃𝑛
goal, 𝒈

Result:
𝑻 (𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)
// Calculate the center of rotation at current and
goal poses
𝑮curr (𝑡) ← B(𝑃𝑛

curr (𝑡))𝒈
𝑮goal ← B(𝑃𝑛

goal)𝒈
// Calculate rotation matrix and translation
vector
𝑝curr (𝑡) ← normalize(𝑃𝑛

curr (𝑡) − 𝑮curr (𝑡))
𝑝goal← normalize(𝑃𝑛

goal − 𝑮goal)
𝑅(𝑡) ← Kabsch(align 𝑝curr (𝑡) to 𝑝goal)
𝑻 (𝑡) ← 𝑮goal − 𝑮curr (𝑡)
// Find rotation angles
𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡) ← factor(𝑅(𝑡))
return 𝑻 (𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)

Leica GeoCOM commands. While the multi-station was
used instead of a robotic total station, the algorithms
should be able to be applied on robotic total stations as
long as the communication between the software and to-
tal station can be established because the scanning capa-
bility of a multi-station is not needed for executing the
algorithms. The following two sections describe the test
procedures and evaluation metrics for the resection and
transformation algorithms, respectively.

2.3.1 Experiment on resection

The resection algorithm (Algorithm 1) was tested using
a rectangular mock-up wall (1.8 m wide by 3.1 m high), a
pole with one Leica 360◦ full-size prism (Model GRZ122,
2.0 mm pointing accuracy) installed on the top, along with
the multi-station (Figure 3). The mock-up wall was kept
stationary during all tests to simulate a physical building.
Four Leica reflective tapes (Model GZM31) were placed
close to the four corners of the mock-up wall as control
points (CP). Two positions were used to set up the multi-
station: Position A was at a distance of∼8 m away from the
mock-up wall on the right, and Position B was at a distance
of ∼5 m from the mock-up wall on the left. The pole
with the prism was used to determine the exact translation
vector (𝒕) when the multi-station was moved from one
position to the other and was set to a 1.5 m target height
for all tests.

A total of four tests were conducted. One baseline
test was performed without moving the multi-station to
establish the baseline error of the resection algorithm due

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

108



Figure 3. Experimental setup for testing resection
with Algorithm 1.

to instrument accuracy. In the remaining three tests, the
multi-station was moved from Position A to Position B
or vice versa. During each test, the following steps were
performed. For ease of explanation, the initial setup in
Figure 3 is used as an example.

1. Set up the multi-station at one position (e.g., Position
A in Figure 3).

2. Set up the pole at the other position (e.g., Position B
in Figure 3).

3. Measure the coordinates of four reflective tapes to
obtain the control points (CPold).

4. Measure the coordinates of the prism on the pole.
5. Move the multi-station to Position B (except in the

baseline test).
6. Reset the orientation of the multi-station randomly

(except in the baseline test).
7. Measure the height of the multi-station.
8. Remeasure the coordinates of the four reflective tapes

to obtain the control points in the new coordinate
system (CPnew).

9. Run Algorithm 1 to determine translation 𝒕 and
change in orientation 𝐴𝑧. Adjust the data stored in
the original coordinate system to obtain CPadjusted and
reset the orientation of the multi-station to 𝐴𝑧.

10. Remeasure the coordinates of the four reflective tapes
(CPmeasured).

Two different measurement modes of the multi-station
— “Auto” and “Manual” — were used in the tests to mea-
sure the coordinates of the reflective tapes. In the “Auto”
mode, the laser of the multi-station was pointed close to the
reflective tapes, then the multi-station searched for it and
measured automatically. In the “Manual” mode, a human
manually aimed the laser at the target and commanded the
multi-station to measure and record the coordinates of the
target. By varying the measurement mode, the error for

each measurement mode can be determined and compared.
The true translation of the multi-station was determined

in Steps 4 and 7 above. By measuring the prism on the
pole, the translations in the 𝑥- and 𝑦-axes (i.e., the two
axes in the horizontal plane) relative to the original setup
of the multi-station were directly obtained. To calculate
the true translation in the 𝑧-axis (i.e., the vertical axis),
the 𝑧-coordinate of the prism on the pole measured in
Step 4 was first subtracted from the height of the prism
(1.5 m), which was then subtracted from the height of the
multi-station measured in Step 7 after the multi-station
was moved.

To assess the accuracy of the resection algorithm, two
metrics were used. The first one is the absolute difference
between the true and calculated translation along three
axes. The second one is the Euclidean distance between
CPmeasured in Step 10 and CPadjusted in Step 9 for each
control point on the mock-up wall, which reflects the dif-
ference between the true position of control points relative
to the new setup of the multi-station and the calculated
position based on the resection algorithm.

2.3.2 Experiment on rotation

Experiments were conducted to test the accuracy of the
algorithm for rigid-body transformation (Algorithm 2) in
computing the rotation angle around a single axis. These
simplified experiments isolated the rotation around one
axis from translation and rotation around the other two
axes, which serve as a good starting point for evaluating
the algorithm.

The experimental setup is shown in Figure 4. A 0.76 m
high by 0.76 m wide prefabricated wall panel with a mass
of 14 kg was installed on a heavy-duty desk monitor arm
using a VESA mount. The monitor arm allows for rotating
the panel around multiple joints within a range of at least
75◦. Three Leica 360◦ mini prisms (Model GRZ101, 1.5
mm pointing accuracy) were installed on the top right,
top left, and bottom left corners of the panel (Figure 4a).
One reflective tape was placed at the center of the panel’s
front face. The table that the monitor arm was attached to
was level and provided a flat surface to place one leg of a
digital protractor (Bosch GAM 220 MF, ±0.1◦ accuracy)
to measure angles (Figure 4).

In each test, the table remained stationary, and the
panel was only rotated around the joint on the VESA
mount at the back face of the panel, which formed a ro-
tational movement around the axis (hereafter referred to
as rotation axisarm) that was perpendicular to the panel
face and went through the center of the panel’s front face
as marked by the reflective tape. The north or 𝑦-axis of
the multi-station needs to be parallel to rotation axisarm to
make sure that the angle around the 𝑦-axis obtained from
Algorithm 2 is around the same axis as the actual rotation
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Figure 4. Experimental setup for testing rotation
around a single axis with Algorithm 2.

to compare angles. To achieve this, the panel was set to
plumb before all tests (a 90◦ between the table and the
panel’s back face shown in Figure 4b), and the north of the
multi-station was set to perpendicular to the plane formed
by the three prisms on the panel at the beginning of each
test. The rotation angle around rotation axisarm was de-
termined by measuring the angle between the edge on the
right side of the panel and the table before and after the
rotation with the digital protractor and then calculating the
difference in the two angles (Figure 4a).

The center of rotation is essential in Algorithm 2 to
determine translation accurately. While the true center of
rotation was the monitor arm’s joint at the center of the
panel’s back face, the reflective tape was used as the center
of rotation when running Algorithm 2 because the center
of rotation affects translation but not rotation angles. The
tape and prisms were measured before all tests to determine
the coefficients 𝒈 of the linear combination that can express
the coordinates of the panel center using the coordinates of
the three prisms. These coefficients were used to calculate
the panel center. A total of seven tests were performed
following the following procedure:

1. Set the panel at a position as the goal pose.
2. Measure the angle between the right edge of the panel

and the table with the protractor (𝛼goal).
3. Measure the coordinates of the three prisms with the

multi-station.
4. Set the north of the multi-station perpendicular to the

plane formed by three prisms.
5. Measure the coordinates of the three prisms (𝑃𝑛

goal)
and the tape (𝑮goal,measured) with the multi-station.

6. Rotate the panel around the rotation axisarm to the
current pose.

7. Measure the angle between the right edge of the panel
and the table with the protractor (𝛼curr).

8. Measure the coordinates of the three prisms (𝑃𝑛
curr (𝑡))

and the tape (𝑮curr,measured) with the multi-station.
9. Run Algorithm 2 to obtain the angles between the

current panel pose and the goal pose.

The accuracy of the algorithm was evaluated by the dif-
ference between the rotation angles that were measured
with the protractor and calculated with the algorithm. The
measured rotation angle was obtained by subtracting 𝛼goal
in Step 2 from 𝛼curr in Step 7. Additionally, the transla-
tion from the current panel position to the goal position
was compared between the algorithm output and measure-
ment. The measured translation was obtained by subtract-
ing 𝑮curr,measured in Step 8 from 𝑮goal,measured in Step 5.

3 Results
This section presents the performance of the algorithm

on resection (Algorithm 1) first, followed by the perfor-
mance of the algorithm on rigid-body transformation (Al-
gorithm 2).

3.1 Experiment on resection

Four tests where the multi-station measured four control
points fixed on a mock-up wall were conducted, and the
translation and the rotation angle of the north (“azimuth”)
of the multi-station are shown in Table 1.

In Test No. 1 where the multi-station stayed stationary,
the maximum absolute error in translation was 1.0 mm
and that the rotation angle in the north was 0.004◦. These
non-zero values were caused by the measurement error of
the multi-station.

In Tests No. 2—4, the multi-station was translated in
all three axes and rotated around the vertical axis (𝑧-axis)
by an angle in a wide range. The results of Tests No. 2—4
show that the translation calculated by Algorithm 1 was
close to the true translation as determined by the full-size
prism on a pole with a maximum absolute error of 6.5
mm on one axis. It should be noted that the true error
in translation was likely smaller than 6.5 mm because the
multi-station may have not been set up at the exact location
of the pole due to human error. Therefore, the accuracy
of Algorithm 1 is better reflected by the Euclidean differ-
ence in the measured and adjusted coordinates of the four
control points on the mock-up wall as shown in Table 2.

Consistent with Table 1, Table 2 shows a small baseline
error (an average of 0.6 mm point difference) in the co-
ordinates of control points in Test No.1 due to instrument
error. After the multi-station was translated and rotated
(Tests No. 2—4), Algorithm 1 was able to predict the
coordinates of control points in the current setup with an
average error between 2.3 and 3.1 mm, which is lower than
a threshold of 3.2 mm as recommended by industry part-
ners for measuring panel positions [2]. The error varied
among different control points and tests, but the variation
was small. There was no noticeable difference between
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Table 1. Performance of Algorithm 1: translation and azimuth.
Test No. 1 2 3 4

Measurement mode Auto Manual Auto Auto

Translation True 𝑥 0 4.4909 -3.1040 -2.9615
(m) 𝑦 0 -1.8064 3.2602 3.8264

𝑧 0 0.0037 -0.0076 -0.3000

Calculated 𝑥 0.0010 4.4898 -3.1105 -2.9658
(m) 𝑦 0.0001 -1.8122 3.2657 3.8299

𝑧 -0.0005 0.0046 -0.0066 -0.3017

Absolute error 𝑥 1.0 1.1 6.5 4.3
(mm) 𝑦 0.1 5.8 5.5 3.5

𝑧 0.5 0.9 1.0 1.7

Azimuth Calculated (◦) 0.004 58.3 83.7 267.9

Table 2. Performance of Algorithm 1: Error in the
coordinates of four control points (CP, mm).

Test No. 1 2 3 4

CP1 0.7 2.5 1.9 2.8
CP2 0.6 3.1 1.5 3.1
CP3 0.6 3.9 4.1 3.8
CP4 0.6 3.1 1.5 2.6

Average 0.6 3.1 2.3 3.1
Maximum 0.7 3.9 4.1 3.8

Test No.2 and the other two tests with a different mea-
surement mode, which indicates that the auto mode can
achieve an accuracy as good as the manual aiming mode.

While on average, the error in the predicted coordinates
was acceptable for prefabricated construction, the maxi-
mum error was about 1 mm above the threshold of 3.2
mm (Table 2). Therefore, this error needs to be reduced
further. One approach is to investigate the reason for the
maximum error appearing at CP3 which was the control
point at the lower left corner of the mock-up wall in all
three tests. It was likely that the tape of this control point
was not measured as accurately as the other three tapes.
Another approach is to study if the error can be reduced
by using more control points as the input to Algorithm 1.

3.2 Experiment on rotation

The algorithm of rigid-body transformation (Algo-
rithm 2) was tested by rotating a panel around a single
𝑦-axis, and the results are displayed in Table 3.

The test panel was rotated around the 𝑦-axis as set by
the multi-station by an angle from ∼ 5◦ to ∼ 26◦ at an

interval of ∼ 5◦ both in the clockwise and counterclock-
wise direction. An angular error smaller than 0.5◦ was
achieved when comparing the rotation angle measured by
the digital protractor and the angle around the 𝑦-axis cal-
culated by Algorithm 2. The error in the angle tends to be
larger when the angle is larger, which was likely caused
by a larger human error in rotating the panel. In addition
to the angle around the 𝑦-axis, angles less than 0.57◦ in
absolute value were obtained for the 𝑥 and 𝑧- axes. The
non-zero angles around these two axes were caused by the
measurement error of the multi-station and the possibility
that the panel was slightly rotated around these two axes
when it was rotated around the monitor arm’s joint on the
VESA mount due to human error. The experiment setup
needs to be improved further to eliminate the human error.

The true translation of the panel is zero because the
panel was only rotated, and the translation measured by
the tape at the panel center and that calculated by using the
coefficients of the linear combination of three prisms are
both nearly zero. A maximum Euclidean distance error
of 5.5 mm was observed in the measured and calculated
translation. This error can be reduced further by increas-
ing the accuracy of the calculated coefficients of the linear
combination by taking the average of multiple measure-
ments.

4 Conclusions and next steps
Two algorithms were developed to aid the real-time

tracking and positioning of prefabricated components in
construction. The resection algorithm enables the align-
ment of the digital twin with physical twin regardless of
the position and orientation of the total station. Lab-scale
tests show that an average error of less than 3.1 mm was
achieved in point coordinates, which satisfies the industry
recommendation of less than 3.2 mm. The second algo-
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Table 3. Performance of Algorithm 2
Test No. Measured angle (◦) Rotation angle from Algorithm 2 (◦) Error

Current Goal Rotation
angle

𝑦-axis 𝑥-axis 𝑧-axis Rotation
angle (◦)

Translation
(mm)

1 95.4 90.2 5.2 5.13 0.03 0.29 0.07 1.0
2 100.9 91 9.9 9.91 0.02 0.12 0.01 5.5
3 105.3 90.8 14.5 14.42 -0.01 -0.29 0.08 4.0
4 111.7 91 20.7 20.45 0.01 -0.33 0.25 4.8
5 115.7 89.4 26.3 26.13 -0.24 -0.57 0.17 1.9
6 90.8 111.6 -20.8 -20.45 -0.23 0.43 0.35 4.4
7 91.1 117.9 -26.8 -26.37 -0.22 0.32 0.43 3.0

rithm transforms the component from the current pose to
the intended goal pose. The tests of rotating a component
around a single axis show that the error in the rotation an-
gle was less than 0.5◦, which is acceptable given the large
rotation angles of the component.

Several limitations in this paper require future research.
First, the errors observed in the performance of the two
algorithms need to be reduced. Potential approaches in-
clude reducing instrument error (e.g., selecting different
measurement settings, using reflectors with higher accu-
racy), revising the algorithms to decrease their sensitivity
to instrument error, and eliminating human error by de-
signing better experiments. Second, experiments that can
test the transformation algorithm for rotations around all
three axes need to be conducted. Third, the Euler angles
around the 𝑥, 𝑦, and 𝑧- axes in a Cartesian coordinate
system set by the total station are currently used in the
transformation algorithm. The choice of using the prefab-
ricated component as the local coordinate system should
be included in the algorithm. Ultimately, these two algo-
rithms will be implemented on the Real-Time Evaluator
(RTE) to optimize and automate the process of installing
prefabricated components with high accuracy.
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