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Abstract – 

Conventional defect inspections in newly 

constructed indoor environments still rely heavily on 

manual checking and judgement, which can be costly, 

time-consuming, superficial, and prone to human 

errors. In this paper, we have proposed a novel 

complete integrated system where a mobile-robot 

platform capable of autonomous navigation, 

performs data collection in indoor environments and 

transmits this data to a remote server on the cloud. 

Here, our AI and 3D fusion analysis software detect 

defects such as alignment, evenness, cracks, damages, 

and finishing defects as per the Construction Quality 

Assessment System (CONQUAS) standards. The 

results are then published to a well-designed web-

based User-Interface system where stakeholders can 

view/track the defects. By integrating these core 

technologies and addressing most of the practical 

concerns, our proposed approach is able to conduct 

inspections with higher accuracy and efficiency 

compared to traditional manual assessments.  

Keywords – 

Mobile-robot; Defect Inspection; Cloud; 

Construction Quality, Alignment, Evenness, Crack, 

Damages, Stains, User Interface 

1 Introduction 

Conventional inspection tasks in many of the building 

construction processes, such as soil investigation, 

excavation, structural, architectural and mechanical and 

electrical inspection are conducted manually by skilled 

inspectors. Manual inspections have several associated 

problems such as inaccuracies (prone to subjectivity of 

inspection professionals), difficulty to find skilled 

inspectors or high cost to upskill existing inspectors to 

prevent incorrect use of tools and failure to spot defects, 

incompleteness (areas like external walls, facade, 

ceilings, etc. are difficult to be assessed and evaluated), 

physical fatigue and safety hazards due to long working 

hours and unsafe working environment. The data 

collected during an inspection is owned by the individual 

entities responsible for the inspection task and this data 

cannot be distributed across multiple stakeholders for 

further tracking or management of defects. For these 

reasons, it is imperative to consider automated solutions 

for inspection tasks using robots.  

One of the common inspection tasks is the assessment 

of the quality of finishing in newly completed units such 

as unevenness, wall corner right-angleness, wall 

verticality, etc. In Singapore, this assessment is based on 

workmanship standards set in the Construction Quality 

Assessment System  (CONQUAS), which is maintained 

by Building and Constuction Authority (BCA),  a 

statutory board under the Ministry of National 

Development of the Government of Singapore. The latest 

revision to the standards was released in 2022 [1]. There 

is generally a higher demand for Quality Mark (QM®) 

tested residential units which are 100% thoroughly 

inspected (compared to sample tested units). Therefore, 

there is a real need to automate these tedious inspection 

tasks using mobile robots that overcome the 

Figure 1. Overview of the System: It consists of (i) 

Mobile-robot platform, (ii) 3D and AI Analysis 

software on the cloud, (iii) Web-based user 

interface for robot control and defect 

visualization.
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disadvantages of conventional manual methods. The 

Government of Singapore is actively working towards 

the integration of digital technologies in various 

construction processes through its Integrated Digital 

Delivery (IDD) program. [2].  

Based on our interviews with the building inspectors, 

‘architectural’ inspections (which consider internal and 

external finishes, material & functional tests) constitute 

the major workload (more than two-thirds) compared to 

‘structural’ and ‘M&E (Mechanical and Electrical)’ 

inspections. Therefore, we are considering primarily 

architectural inspection for this project. From our 

preliminary investigation, automating this inspection 

process called for a complete integrated solution that 

addressed several key concerns: (i) a portable and 

automated robot system with safe navigation, (ii) ease of 

control for a person with limited robotics skills, (iii) fast, 

thorough and accurate inspection, (iv) real-time analysis 

to detect defects such as cracks, stains and unevenness, 

and (v) render visualizations and generate reports of 

defects. Overall, the target is to achieve high accuracy 

and higher productivity compared to manual inspection. 

In this paper, we introduce an autonomous mobile-

robot-based inspection system to facilitate ‘Accurate 

Construction Quality inspections’ with an ‘Intuitive User 

Interface’. The contributions of our work include: 

1) Integrated mobile-robot inspection platform with 

safe autonomous navigation and data collection 

capabilities. The robot uses Building Information Model 

(BIM) or 2D floorplan drawing as a prior map for robot 

navigation and scanning position determination for data 

collection. 

2) AI and 3D-based analytic engines for room 

structure understanding and defect inspection from 3D 

point-cloud and image data. AI semantic segmentation 

and 3D geometry analysis technologies are combined to 

facilitate analysis. 

3) Intuitive user interface for robot control, inspection 

results visualization/editing, report generation and 

information sharing with multiple stakeholders.   

 In this paper, we have discussed the related works in 

Section 2, described the overview of our inspection 

system in Section 3, and the operations and methods in 

Section 4. We have provided the results from on-site 

testing in Section 5 and concluded in Section 6. 

2 Related Works 

Recently, many robotics related open-source software 

(such as ROS) have simplified the adoption of robot 

systems and it can be easily observed in the rise in the 

number of construction related research papers [3, 4, 5, 6, 

7]. Paper [5] develop a scaffold scanning dog robot with 

all computation such as SLAM, scaffold detection 

algorithm running in an onboard PC. Paper [6] developed 

a mobile for point cloud scanning with SLAM and 

context awareness for navigation all on the on-board PC. 

For such an architecture, scaling the robot to larger area 

or more complex algorithms requires upgrading the 

computational capacity of the computer. This eventually 

increases the power-requirement, and thereby the battery 

weight. To avoid this problem, our method off-loads 

some of the computationally heavy tasks (that are not so 

time-sensitive) to the remote server on the cloud. This 

introduces new challenges such as network connectivity 

and data transmission efficiency, which we have also 

addressed in this paper.    

In paper [7], the authors describe the development of an 

autonomous robot that performs data collection through 

autonomous navigation. The paper focuses on the data 

collection process and only for construction progress 

monitoring purpose. Data collection for an inspection 

operation needs to consider many other factors such as 

sensor characteristics, floor plan geometry, total 

inspection time, etc. In papers [8] and [9], the authors 

describe methods to find optimal scan positions that 

improve coverage and minimize data collection time. In 

paper [8], it simplifies the problem by considering only a 

discrete grid of candidate scan points on the floorplan for 

optimization. Our approach improves this method by 

considering an iterative approach to optimize over a 

continuous space. Although, many of these research 

techniques focus on the autonomous capability, 

construction workers mostly look forward to using a 

product that is easy-to-use and intuitive. We address this 

by providing multiple modes of operation of the robot 

through a simple user interface. 

In recent years, we have seen an uptick in the number 

of technology companies that have started working in this 

domain. A Singapore start-up company, Transforma 

Robotics developed Quicabot, an autonomous wheeled 

robot used for 3D and visual data collection and defect 

detection [10, 11]. The robot has at least four types of 

sensors (a 2-D laser scanner, a colour camera, a thermal 

camera with heater, and an inclinometer) for detecting 

hollowness, alignment and evenness, crack and 

inclinations. While the system claims to cover many of 

the defect types to be inspected faster than manual, there 

is not much information on how the defect information is 

stored and reported to the user. Based on interviews, 

during defect rectification, the main pain points for most 

construction companies are miscommunication and non-

traceability of defects.  In this paper, we present solutions 

to address these pain-points through our defect 

visualization and report generation techniques.  

A startup based in Barcelona, Naska.ai (previously 

Scaled Robotics), works on construction site data capture, 

analysis and reporting services for quality control and 

coordination [12]. Its software is not attached to any 

specific sensor or robot hardware. Doxel, a startup based 
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in Silicon Valley, provides software services for 

automated progress tracking, cost scheduling and 

estimation. Another Silicon Valley startup company 

Holobuilder (developed the ‘Spotwalk’ robot), primarily 

uses a 360-degree camera for Construction Progress 

Monitoring. Naska, Doxel and Holobuilder do not work 

on defect detection and the robot hardware is not their 

primary focus. For defect inspection application, the 

accuracy and reliability of defect analysis depends a lot 

on the data acquisition process. Early defect detection 

can save significant time and money by avoiding rework. 

In this paper, we focus on problems and solutions with 

respect to defect inspection process and present methods 

to improve the data acquisition process.  

Differing from existing players, our solution aims to 

provide a complete integrated solution with an 

autonomous mobile robot platform equipped with high-

resolution 3D scanning and surround-view image capture, 

capable of traversing safely in a newly constructed unit, 

real-time defect detection (both structural and visual 

defects) with 3D and AI analytical engines. Our solution 

addresses practical concerns and aims to deliver superior 

accuracy and faster inspections compared to traditional 

manual methods.  

3 Overview and Physical setup 

The overall inspection system consists of 3 main 

components corresponding to (i) data collection (mobile 

robot platform with sensors), (ii) data analysis (remote 

server with AI/3D analysis engines), and (iii) data 

visualization (web-based UI). The connections between 

these components are shown in Figure 1.  

The data collection platform mainly consists of a 

wheeled mobile robot platform fitted with a variety of 

sensors, computing platform and internet connectivity. 

The robot is built from scratch using mostly off-the-shelf 

components. The chassis is modified from Ubiquity 

Robotics Magni robot by replacing the non-driving caster 

wheels with two larger omni-wheels of 20 cm diameter. 

This makes the mobile platform capable of climbing 

small steps less than 5cm. This is to take care of the 

movement of the robot in and out of the toilet or balcony 

whose floor levels are usually lower than other rooms. 

The robot is not designed to climb stairs. However, we 

have designed the robot to be under 25kgs, allowing for 

manual lifting to different floor levels, if elevators are not 

available. Within the same floor level, the robot can be 

either remote-controlled or be pushed like a trolley to the 

testing site. The suspension design was modified to allow 

for the driving wheels to be always in contact with the 

floor to avoid slippage.  

The robot uses a multitude of sensors such as Hokuyo 

UST-10LX 2D laser range scanner, Intel Real-sense 

D435 RGB Depth cameras, and Leica BLK360 3D 

terrestrial laser scanner. The 2D laser range scanner and 

the depth cameras are for navigation purposes 

(localization, safety and teleoperation). The terrestrial 

laser scanner is for collecting high resolution and high 

accuracy point cloud and image data. The robot is 

required to stop and then perform scanning (stop-scan-go) 

as BLK360 is a static laser scanner. The specification of 

this sensor is shown in Table 1.  

Each scan takes less than two minutes to complete the 

scan and each scan captures high-resolution point cloud 

and 28 pictures covering 360̊ space, as well as generates 

a panoramic image, as shown in Figure 2. The laser 

scanner is mounted at a certain height on a pole and the 

robot connects to this sensor via Wi-Fi. The robot 

footprint dimensions are 63cm x 42cm and height is 

50cm (with sensor pole folded) and 1.20m (with sensor 

pole upright).  The battery life is above 6 hours for 

nominal usage (70% travel time) and further it supports 

hot-swapping to prolong the operation time. The entire 

robot is designed to be modular for easy development and 

troubleshooting.  

As the computation power of the robot is limited, all 

Table 1 BLK360 Specifications 

Field-of-view 360° (horiz) / 300° (vert) 

Scanning range min. 0.6 - up to 60 m 

Accuracy 6mm @ 10m 

Camera system 15 MPixel 3-camera 

system, 150Mpx full 

dome capture, HDR 
 

 

Figure 2. Data captured by scanner on the robot. 

Point Cloud Camera Image 360o Panoramic Image

 

Figure 3. Occupancy map is created from 2D 

floor plan. The pixel colors represent free space 

(white), obstacles(black), keep-out region (grey). 
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the scan data collected gets uploaded to the remote server 

on the cloud through the internet for 3D and AI analysis 

and defect report generation. At the remote server, the 

high computational power hardware is able to process the 

data very fast. Speed is very critical for inspections as the 

longer it takes to detect a defect, the more the rework that 

must be done. Apart from the scan data, other necessary 

information such as robot position in the map, calibration 

details and analysis results are also stored on the remote 

server. The data management software and intuitive user 

interface are also developed to share the information 

among multiple stakeholders to visualize the inspection 

data and check the reported defects.  

4 Operation and Methods 

In this section, we will first introduce three operation 

modes of the robot, the 3D and AI analysis flow and 

integrated robot control and data management UI. 

4.1 Robot Operation  

In a typical CONQUAS inspection, two inspectors 

are involved. However, our inspection routine is 

designed to streamline the process by combining the 

efforts of one robot and one human inspector. In this 

setup, a single inspector brings the robot to the test site. 

Using a hand-held tablet's user interface, the inspector 

selects the map corresponding to the residential unit 

number. They then set an approximate initial pose for the 

robot on the map by utilizing a click and drag action. The 

robot utilizes this information for localization, estimating 

its current position within the map.  

Our localization algorithm (based on AMCL - 

Adaptive Monte-Carlo Localization) relies on odometry 

data from laser scan matching instead of the wheel 

encoders, and therefore, does not lose localization even 

if the map information is not very precise. We only use 

an approximate occupancy map image obtained from 

either BIM (IFC) model or 2D floor-plan map drawing 

(with some manual cleanup to ensure that the occupancy 

map is safely navigable by the robot) as shown in the 

Figure 3. This alleviates the necessity to conduct any 

prior mapping for autonomous navigation. This saves any 

time required for setting up the robot (at least 30% of the 

total time needed) and improves productivity compared 

to existing automated systems. Our navigation 

algorithms (based on open-source ROS Navigation stack) 

ensure that the robot does not enter the unknown areas or 

collide with obstacles. Once the inspector verifies that the 

robot has localized properly from the UI, then he/she can 

choose one of three modes of operation for the robot. 

The robot has three modes of operation (Mode 1, 

Mode 2, and Mode 3). Mode 1 is the manual mode where 

the robot is controlled manually using a joystick button 

on the UI. It also allows the inspector to teach scan-routes 

to the robot. Scan-route are made up of waypoints (where 

the robot passes through) and scan-points (where the 

robot stops to scan). Although we have the option to 

handcraft the scan-routes directly on the UI (without 

moving the robot), it is recommended to use the robot to 

ensure that the scan-route is navigable with high 

confidence. In the Mode 2, the user simply selects along 

one of the previously created scan-routes in the same or 

similar floorplan unit. This is very useful for high-rise 

buildings, where the same scan-route can be used for 

units with similar floorplans across different levels of the 

building. The robot then autonomously and safely 

navigates along this selected scan route and collects the 

scan data.  

When the robot moves to the scan location, it triggers 

the scan command wirelessly to BLK360 sensor. The 

robot waits until the scan is complete and then navigates 

to the subsequent scan position. While the robot is 

working, the inspector is free to do other inspection tasks 

such as functionality tests and hollowness checking. As 

the robot is not capable of opening doors by itself, the 

inspector ensures that the doors are already open before 

starting autonomous navigation. This implies that 

surfaces behind the open doors will not be scanned by the 

robot. 

Manually creating an optimal scan-route to maximize 

coverage and minimize inspection time, is very difficult 

without much experience and knowledge about the 

sensor and the robot. Therefore, we have developed 

Mode 3, where the robot does automatic selection of 

good scanning positions that guarantee full coverage with 

 

Figure 4. Mode 3 of the robot operation (a) 

Optimal computation of scan-points, (b) Shortest 

path through the scan points.   

Table 2 CONQUAS Inspection Requirements 

Items Description 

Wall / floor evenness No more than 3mm per 1.2m 

Wall meet at right angles  No more than 4mm per 0.3m 

Wall verticality No more than 3mm per m  

Wall / floor / ceiling / 

door finishing/damage 

defect 

No stain marks. 

No rough / patchy surface 

No visible damage / defects 

Floor level height Minimum 2.8 m 

Ramp slope A gentle gradient of 1:20 to 1:15 is 

preferred  
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minimum number of scans, given a floorplan image. We 

observed that the noise of the measurement increases 

with the distance from the scanner and decreases with the 

incidence angle at the surface to be inspected. It also 

increases with the reflectivity of the material surface. 

Based on our experiments with BLK360, the nominal 

range could be set at 3 meters for achieving the required 

high inspection accuracy up to 3mm per 1.2m length as 

per CONQUAS standards. For a dense grid of points 

uniformly distributed on the navigable free space of the 

floor plan, we compute a score for each point that 

quantifies the scanning efficiency at that point based on 

the visibility, incidence angle and distance requirement 

from the walls. Given the floorplan area and scanner 

range we compute the required number of scan-points. 

The scan points are seeded at random positions in the 

floorplan and then we use these points as Voronoi centers 

for the Lloyd’s algorithm to construct a weighted 

Centroidal Voronoi Tessellation. The weighting density 

function is obtained from the dense grid scores. Over 

several iterations, the scan-points (also Voronoi centers) 

converge to an optimal position that maximizes the scan 

scores. Figure 4 shows the resulting optimal scan 

positions for covering a sample unit. We then use an 

open-source Travelling Salesman Problem (TSP) solver 

to get the optimal path to these scan-points. 

The robot can travel along the same path, stop at same 

locations and collect data whenever it sent for inspection. 

That provide the advantages of being able to compare 

images or point cloud from several inspections over a 

long period of time. It requires multiple scans to cover 

the entire apartment to handle occlusions and meet the 

accuracy requirement at all surface points.  As the data 

size is humongous, we use MPEG point-cloud 

compression technique to compress the data by more than 

80% before uploading. The raw images are compressed 

to lossy JPEG compression (85% quality). The final data 

size (including the point-cloud and the images per scan) 

is only about 12~15 Mb. All the scan data is further 

compressed to a zip file and then it becomes easier to 

transmit the data to the remote server via 4G/LTE modem 

on the robot. 

4.2 3D and AI analysis flow 

Once all the scan data is uploaded, the remote server 

conducts the 3D and AI analysis on both the point cloud 

and image data. It is essential to link defects or non-

compliances with the relevant structural components of 

the rooms, such as walls, floors, ceilings, doors, and 

windows (see Table 2). Therefore, the key step is to 

understand the room’s structure.  

A framework is devised to combine both point cloud 

and image data. In Figure 5, the process begins with point 

cloud cleanup, including de-noising and removal of low 

reflectance points. Geometric analysis is then employed 

to extract planes, eliminating objects unrelated to the 

room structure, such as the robot operator. Position and 

direction information for the floor, ceiling, and walls can 

be derived from the point cloud.  Utilizing AI technique 

PointNet++ [13], we extract more semantic information 

like doors and windows in the point cloud. Semantic 

segmentation results of point cloud are then then further 

refined by projecting onto the panoramic image. This 

information is later used by visual defect detection 

system on camera images to remove false detections. A 

sample result of panoramic image is shown in Figure 7. 

Defect inspection is conducted by 3D and AI analysis 

parallelly. 3D point cloud measurement is used for 

ceiling height measurement, evenness of walls, floor and 

ceiling, wall verticality, wall corner angle, and ramp 

slope. To reduce computation complexity, sampling 

method is used. For example, for unevenness analysis, 

the points on each plane are sampled and the up-down 

variance in the local area around the sampled point is 

 

Figure 5. 3D/AI analysis flowchart 

 

Figure 7. Room structure analysis  

 

Figure 6. 3D analysis for structural defects 
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computed for evenness. The sampled measurements are 

interpolated to obtain the dense output for each point on 

the plane.  

Figure 6 demonstrates the measurement of floor level 

height for individual points on the floor. Additionally, it 

illustrates the measurement of evenness for each point 

relative to its own plane surface. In the image, purple 

color indicates an even surface, green indicates 

unevenness of 3mm and yellow indicates unevenness of 

4mm or higher. This example highlights the robot 

system's ability to easily detect door warpage that could 

be overlooked by inexperienced inspectors. In Figure 8, 

the sample visual defect detection results are shown for 

floor and non-floor part separately. 

To detect finishing and damage defects, we project 

the semantic segmentation information onto camera 

images to distinguish between floor and non-floor 

components. The defect object detection is conducted 

separately because floor and non-floor parts are different 

in their characteristics. Non-floor components, like walls 

and ceiling, are usually white painted which lacks 

textures. On the contrary, floor contains more textures 

due to different materials such as wood, marble, and 

ceramic tiles. Therefore, detection methods and models 

are trained for floor and non-floor parts separately by 

using YOLOv5’s architecture [14]. Our approach 

involves utilizing multiple public datasets for pre-

training, followed by fine-tuning the model using a 

combination of both public datasets and our collected 

datasets. By employing this technique, we achieve a 

recall rate of up to 80%. 

Defect analysis is performed on each scan 

independently. To facilitate accurate record-keeping and 

effective communication with stakeholders for necessary 

repairs, it is crucial to determine the precise defect 

positions relative to the entire unit. By leveraging the 

recorded robot position at the time of the scanning, we 

can register point-cloud of each scan to the map. Thus, 

the defect position identified in each scan can be 

transformed and mapped onto the floorplan layout and 

are linked to corresponding room segment (living room, 

kitchen, bedroom, etc.). 

4.3 User interface 

A web-based user interface (UI) is developed for 

robot control and visualization. The data is organized 

hierarchically, categorizing it based on the construction 

project, unit number, and inspection time. Each unit is 

associated with floorplan information and room segment 

details, represented by polygons on the floorplan image 

(refer to Figure 9(a)). To accommodate inspectors 

without robotics expertise, the UI only exposes essential 

controls, ensuring a user-friendly and intuitive 

experience. The UI also provides real-time updates on the 

robot's position and logging information, enabling 

inspectors to monitor the autonomous inspection process 

effectively. Following the analysis, the detected defects 

are displayed on the issue page, organized under the 

relevant room segment (refer to Figure 9(c)). The defect 

position is also visualized on the floorplan and the 

panorama viewer. The inspector has the option to 

add/modify the issues listed before generating the final 

report as a PDF file in the CONQUAS report format. The 

 
Figure 9. User interface 

 

Figure 8. Visual defects at actual site  

 

 

 

Figure 10. A panoramic visualization showing 

accurate defect-positions with close-up image.  
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report also contains the exact pin-point location of the 

defects marked on a panoramic image as illustrated in 

Figure 10. 

5 Results 

Tests were conducted in a newly constructed residential 

units, before the actual CONQUAS inspection by the 

inspection personnel. The floorplan was obtained from 

the brochure of the construction project and occupancy 

map image is prepared as seen in Figure 11. After the 

robot is brought to the construction unit, the initial 

position was set, the robot was observed to localize and 

navigate well just based on the approximate floorplan 

map and did not require prior mapping. 

We have provided a comparison of timing and 

detection performance of the robot with a manual 

counterpart in Table 3 from one of our site tests. The 

inspection was carried out in a newly constructed three-

bedroom apartment. With the assistance of a trained 

inspector, we identified a total of about 61 finishing 

defects in the whole unit. Subsequently, we evaluated and 

compared the performance of a robot against that of an 

actual inspector. For a total of 11 scans, robot takes 

roughly 22 minutes for the data collection for the entire 

unit. The raw data generated from these 11 scans amounts 

to approximately 1.6GB, but after compression, it 

reduces to around 150MB. For data downloading from 

the scanner and uploading to server (which highly 

depends on network connectivity), it takes another 18 

minutes. Analysis takes around 5 minutes at the remote 

server. Altogether, the data collection, transmission and 

processing take a total of about 45 minutes. Initially, the 

inspection process carried out by our system may seem 

slightly slower compared to a human inspector team, 

which typically takes around 35 minutes to complete 

visual and structural defect detection in the same area. 

However, significant time savings are achieved during 

the photographic evidence capturing and report 

generation phase. This particular process can take several 

hours for a human inspector, whereas the robot is capable 

of producing location-referenced images within a few 

seconds. 

In terms of inspection performance, the robot is able 

to detect at least two thirds of the total visual defects 

reported by human inspector team. the human inspector 

excels in identifying certain minute defects that are 

observed up close and may not be captured by the robot's 

camera due to factors such as poor lighting or significant 

distance (as shown in Figure 12). Lighting plays a critical 

role in determining the accuracy of visual defect 

detection results. The analysis indicates comparable 

performance between the robot and human inspectors in 

detecting larger defects measuring over 2 cm. However, 

further improvement is necessary for identifying smaller 

defects.  As an improvement measure, we conducted tests 

by equipping additional lights on the robot, which led to 

enhanced inspection results, especially on cloudy days. 

In terms of structural defect inspection, our system 

surpasses manual inspection effortlessly. Human 

inspectors are limited to conducting sampling tests on 

reachable surfaces, whereas our system can examine 

every single point on the surface. Furthermore, we have 

observed instances where the robot successfully 

identifies new visual and structural defects that were 

previously unnoticed by human inspectors. 

 

Figure 11. Testing at Actual Site  

Table 3 Comparison of the Timing and Defect detection 

Items  Mobile-Robot  

(+ 1 Inspector) 

Manual 

(2 Inspectors) 

Defects (numbers) 40 61 

Set-up time < 2 min NA 

Total Inspection Time 46 min 51 sec  ~35 min 

- Data Collection 22min 37 sec   

    - Scanning Time (11 scans) ~18 min NA 

    - Movement (Mode2) ~4 min NA 

- Data downloading from 

Scanner 

15 min 15 sec NA 

- Data Upload to Server 3 min 24 sec NA 

- AI and 3D Analysis 5 min 35 sec NA 

Report generation 15 sec Several Hours 

Accurate location referencing  Yes No 

Digital photographic record for 

evidence and traceability 

Yes No 

   

 

 

Figure 12. Some defects not observed from far 

distance with bad light conditions  
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6 Conclusion 

In this paper, we introduce the integrated mobile-

robot and cloud-based defect inspection system for 

indoor built environments and discuss the practical 

challenges that the system addresses. We present a 

complete system with a mobile-robot platform powered 

by advanced navigation technology, defect inspection 

using novel 3D and AI analytic engines, intuitive user 

interface for robot-system control and data management. 

Our system has been tested in actual construction sites 

for robot navigation and indoor building quality analysis. 

The results demonstrate that our system outperforms 

manual inspection methods in terms of accuracy and 

speed. Moving forward, we plan to enhance the defect 

detection rates by incorporating more training data and 

leveraging manual defect entries as feedback for the 

learning process. Additionally, we aim to reduce 

inspection time significantly by conducting tests with 

multiple robots. The global construction robotics 

industry is experiencing steady growth, and we are 

actively exploring opportunities for commercialization in 

this rapidly expanding market. 
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