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Abstract 

 

Many studies consider excessive fatigue as one of 

the reasons for accidents among construction workers, 

especially in special hazardous work environments 

such as working at heights, heavy physical labor, and 

confined spaces. Unfortunately, due to factors such as 

complex environments, unstable equipment, and 

frequent movement of workers, there is little research 

on safety management of confined spaces and fatigue 

loading of construction workers in the construction 

industry. Therefore, this study developed an Internet 

of Things (IoT) heart rate sensing system, which has 

been verified in the real field and can be applied to the 

physical and mental health management of tunnel 

workers in the construction industry. In addition, a 

fatigue interval fitting model for construction 

workers was established by applying the percentage 

of heart rate reserve (%HRR). The maximum value 

of the anticline point %HRR in the model was defined 

as the fatigue alert value for construction workers, 

which facilitates project managers to monitor the 

abnormal conditions of workers' physiological load in 

a timely manner. 
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1 Introduction  

The construction industry employs about 7% of the 

global employment, and 100,000 workers die on 

construction sites every year, which is about 35% of the 

global occupational fatalities [1]. Many studies have 

shown that occupational accidents in the construction 

industry are associated with overwork and fatigue among 

workers, as inattention may affect their awareness of 

environmental hazards or cause accidents during the 

operation of construction machinery [2-4]. In previous 

studies, heart rate (HR) was commonly used to measure 

worker fatigue in the construction field [5]. Some studies 

have also used relative standards to measure the 

workload or training load of an individual, such as the 

percentage of heart rate reserve (%HRR), %VO2max, etc. 

[6-8]. The relative standard focuses on the management 

of the output of the percentage of body energy relative to 

the load, which is more conducive to the precise 

management of an individual's physical and mental 

conditions. 

 

With the development of wearable devices, more and 

more physiological parameters can be easily collected [9], 

including electromyography (EMG) [10,11]. 

Electroencephalography (EEG) [12,13] and wrist-worn 

photoplethysmography (PPG) devices [14-16]. In these 

techniques, EMG and EEG are weak bioelectrical signals 

that are susceptible to interference from a variety of 

noises. In addition, they are invasive in nature and lack 

convenience [17]. The wristband PPG heart rate sensor 

not only can monitor the heart rate of workers in real-

time but also does not cause discomfort to the staff, so it 

has more potential [18]. 

 

Despite these advances, the collection of 

physiological parameters and personalized fatigue 

management is still a challenge due to complex 

environments, unstable equipment, and frequent worker 

movement, and there is a lack of a basis for judging the 

safety of fatigue load management for special hazardous 

operations such as confined spaces in the construction 

field. Therefore, this study develops an Internet of Things 

(IoT) heart rate sensing system for the limited space in 

the construction industry. In addition, based on the 

physiological values of construction workers, this study 

establishes the coordinate axes with the horizontal axis as 

the cumulative percentage of heart rate reserve (HRR) 

and the vertical axis as the cumulative percentage of 

working time [CPWT] (%) to establish a fatigue interval 

fitting model for construction workers. It defines the 

maximum value of the hyperbolic point in the model as 

the fatigue alert value of the construction workers, which 

is convenient for project managers to monitor the 
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abnormalities of the workers' physiological loads in a 

timely manner.  

Unlike previous studies, the heart rate sensing system 

of the construction industry's Internet of Things (IoT) can 

be used for continuous sensing during the whole working 

day, which overcomes the complex environmental 

interference in the submerged shield tunnel and achieves 

stable data transmission. In addition, the sampling 

frequency, calculation time window, and measurement 

verification method of this study are also different. In the 

data analysis stage, instead of adopting the medical 

concept of Field resting heart rate (FRHR), this study 

calculated the FRHR at the construction site and then 

calculated the %HRR. Python was used to fit the 

relationship between cumulative heart rate reserve 

consumption percentage (% HRR) and working time 

percentage. The coefficient of determination R^2(R-

squared), root mean squared error (RMSE), and mean 

absolute error (MAE) of the fitted curve were used to 

evaluate the results of the regression curve equation, and 

then to find out the anticline of the cumulative curve of 

each day, and the largest anticline of %HRR was used as 

the warning value for this worker. The maximum 

anticline %HRR is used as the warning value for this 

worker. 

2 Literature Review 

2.1 Physiological indicators of workload in the 

construction industry 

The causes of excessive workload and fatigue are 

very complex. Some studies have used relative 

physiological indicators to measure an individual's 

workload, focusing on the management of the output of 

the percentage of the individual's physical capacity close 

to the load, which is more conducive to the measurement 

of individualized fatigue in laborers and the need for 

safety management in the workplace, for example, 

emotional heart zone, the percentage of heart rate reserve, 

and %VO2max [5-8],  Among them,  %HRR is 

considered suitable for assessing the physical demand of 

labor tasks and applied to measure the workload of 

workers [19,20]. However, few studies have defined the 

specific safety interval of %HRR for construction 

workers. Chen & Tserng (2022) considered that the 

%HRR of workers and the percentage of cumulative 

working hours show an S-curve relationship, and its 

distribution location and anticurve point have the 

significance of the safety management of workers' load 

[21]. In this study, the concept is continued, and a fatigue 

interval simulation model is established to find out the 

specific value of the anticurve point of %HRR as the 

fatigue warning value of construction workers, which can 

also get the safety interval of the workload of 

construction workers. 

2.2 Development of IoT real-time heart rate 

sensing systems 

 The Internet of Things (IoT) heart rate sensing 

system has only begun to be practically applied to actual 

construction sites in recent years, including intelligent 

sensing, cloud-based IoT technology, and real-time heart 

rate monitoring and management using big data. The 

sensing data collection and processing has also expanded 

from hours and minutes to continuous sensing 

technology [20,22]. However, Anwer et al. (2021) argued 

that the challenge of using real-time physiological 

measures to assess physical fatigue in construction 

workers is the limitation of the validity of the 

physiological values used to determine fatigue, and there 

is a severe lack of information on fatigue due to data 

omission. [23]. 

Currently, there is still a lack of physiological sensing 

systems for the monitoring and management of tunnel 

workers, such as access control, localization in tunnels, 

and display of vital signs. Therefore, this paper evaluates 

the development of a physiological sensing system 

suitable for long-term monitoring functions and conducts 

system validation in the confined space of a submerged 

shield tunnel site. 

3 Methodology 
 

This research mainly consists of four main phases as 

depicted in Fig. 1: (1) Data Acquisition Overview (2) 

Design of IoT heart rate sensing system (3) Reserve heart 

rate percentage (%HRR) calculation (4) Personal Safety 

Interval Fitting Model. 

3.1 Data Acquisition Overview 

Tunnel construction is a high-risk construction 

operation with more stringent labor safety requirements. 

This study was conducted with the consent of the 

construction company under the condition of not 

interfering with the construction workers' work. The test 

subjects were all the construction workers in the 

construction area, working from 07:00 to 19:00, and their 

heart rate was monitored and recorded throughout the 

whole process—recruitment of test subjects: 23 people, 

all male. Due to the demand of project tasks and 

personnel mobility, not all 23 workers were on the job or 

recorded continuous heart rate data, so in this study, only 

P1, P2, P3, P4, P5, P6, P8, P9, P11, P13 will be used, a 

total of 10 workers' data, as shown in Table 1.     
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Figure 1. The methodological flow chart of this study 

 

Table 1. Basic data table of construction site testers 

Subject Age Height 

cm 

Weight 

kg 

Experience 

Years 

Cardiovascular 

Disease  

Smoking 

Years 

Drinking 

Habit 

Conscious 

Fatigue 

P1 36 179 86 10 N 0 N N 

P2 28 164 85 5 N 14 Y Y 

P3 41 172 83 2 N 20 Y N 

P4 45 178 85 19 N 31 N NS 

P5 45 161 74 5 N 20 Y NS 

P6 26 172 73 1 N 12 N Y 

P8 35 168 90 2 N 25 Y NS 

P9 23 165 43 1 N 10 Y Y 

P11 42 168 60 10 Y 10 Y N 

P13 31 186 71 6 N  17 Y NS 

3.2 Design of IoT heart rate sensing system 

3.2.1 Sensing system equipment and specifications 

The environment in the confined space of the 

construction industry is complex, with poor quality 

network signals, darkness, humidity, loud noise, high 

mobility of workers, frequent job rotation, and high 

difficulty in mechanical operation. In the view of these 

characteristics, this study develops sensing devices and 

constructs an Internet system suitable IoT-PPG for this 

field in order to increase the feasibility and acceptance of 

physiological sensing device applications. The 

equipment and specifications of the heart rate sensing 

network system in this study are shown in Table 2. 

 

Table 2. Heart Rate Sensing System Equipment and 

Specifications 
Device Name  Functional Specifications 

Heart Rate 

Wristbands 

• Detection frequency > 500  

• Signal Frequency >10 times/sec. 

• Power Durability >12 hours 

• Waterproof rating IP 67 

Signal 

receiving and 

transmission 

equipment 

• BLE Router: Raspberry Pi 3B+ 

• Low Power Bluetooth Transmission 

• Simultaneously receiving 20 

Wristbands 

• 100Mbps Ethernet interface 

Server 

Hosting 

Application 

Software 

• Ubuntu 16 

• Java Script 

• HTML 

3.2.2 Planning of sensing systems in actual field 

The experimental field of this study is the 

construction site of the tunneling project, in order to 

make the sensing bracelet broadcasting signal can be 

received smoothly, the system adopts the Bluetooth BLE 

V4.2 transmission standard and configures the signal 

receiving equipment in the construction location where 

the personnel is permanently stationed, and aims at the 

system data coverage rate of more than 80%. According 

to the characteristics of the construction operation of the 

shield project, this study divides it into three sensing 

areas, A, B, and C. It allocates eight signal-receiving 

devices, as shown in Fig. 2, which are as follows: A. 

Ground working area, including four receiving sensors 

for a workshop, rest standby, machine maintenance, and 

material lifting; B. Working shaft area, with one 

receiving sensor at the bottom of the shaft; and C. 

Tunneling area, including three receiving sensors for the 

front, middle, and tail sections of the shield machine. C. 

Tunnel dull area, including three receiving sensors for the 

front, middle, and tail sections of the potential shield 

machine. As shown in Fig. 3, it is a worker wearing a 

heart rate wristband and a Bluetooth receiver transmitter 

in a shield tunnel. 
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Figure 2. System equipment configuration plan of 

ground operation area A and working well area B 

  

a. Bluetooth receiver and 

transmitter in shield tunnel 

b.Workers wearing 

heart rate wristbands 

in the shield tunnel  

Figure 3. Subjects wearing wristwatches work in 

a small shield tunnel environment in the 

experimental field 

3.3 Reserve heart rate percentage (%HRR) 

calculation 

In this study, based on the theoretical development of 

cardiovascular loads (CVL) [24] and heart rate reserve 

(HRR) [7] [8] [25], the PPG heart rate was used as the 

basis for calculating the real-time %HRR index value, 

which reflects the degree of personal physical output of 

construction workers. The %HRR index value reflects 

the degree of individual energy output of construction 

workers and serves as an indicator for the real-time 

management of the workload of construction laborers. 

The significance of the %HRR index refers to the rate of 

depletion of personal heart rate reserve, and the higher 

rate of depletion indicates a higher workload, and the 

related calculation equations are shown in (1) and (2): 

𝐻𝑅𝑅 = ( 𝑀𝐻𝑅 − 𝐹𝑅𝐻𝑅 ) 

 

(1) 

%𝐻𝑅𝑅 = ( 𝑊𝐻𝑅 − 𝐹𝑅𝐻𝑅 ) / 𝐻𝑅𝑅 ∗  100%  
 

(2) 

MHR=206.9-(0.67*Age), Maximum heart rate 

value,bpm. FRHR= Rest heart rate in the construction 

site area, bpm. WHR= Rest heart rate in the construction 

site area, bpm. The estimated maximum heart rate was 

calculated using an age-corrected estimation formula 

proposed by Jackson et al. (2007) [26]. The resting heart 

rate was measured using the field resting heart rate 

(FRHR) [21]. 

3.4 Personal Safety Interval Fitting Model 

A sigmoid function, also known as the Logistic 

function fitting curve, is a function that maps the 

independent variable to a function between 0 and 1. It is 

often used to categorize a problem or to represent the 

growth trend, with formulas such as (3), [27] [28]. 

                                 y =
𝑐

(1+𝑒(−𝑎×(𝑥−𝑏)))
                         (3) 

Where x represents %HRR, y represents the 

corresponding cumulative time percentage, a represents 

the control of the growth rate of function, b represents the 

center point of the function and the slope of the sigmoid 

function, and c represents the upper limit value of y when 

x approaches infinity. 

 

This study used Python to fit the relationship between 

cumulative heart rate reserve consumption percentage (% 

HRR) and working time percentage. The same worker 

was statistically counted for more than seven days, and 

the data were organized into a 5-minute average %HRR 

time series. The coefficient of determination R^2(R-

squared), root mean squared error (RMSE), and mean 

absolute error (MAE) of the fitted curve were used to 

evaluate the results of the regression curve equation, and 

then to find out the anticline of the cumulative curve of 

each day, and the largest anticline of %HRR was used as 

the warning value for this worker. The maximum 

anticline %HRR is used as the warning value for this 

worker. 

4 Results and Discussion 

The results of the fitted regression curves for the 

safety interval of fatigue loads for construction workers 

in this study are discussed. Taking the fitting results of 

P1, P4, and P9 workers as an example, they have 

continuous heart rate data for more than seven days, and 

their job types are construction site managers, crane 

operators, and trolley drivers. 

The main task of P1 is site management, and 

the %HRR data are simulated for nine days. The 

coefficient of determination R^2 is above 0.97, which is 

highly interpretable, and the root mean square error 

(RMSE) and the mean absolute error (MAE) are less than 
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5%, which makes the regression curves highly reliable. 

The maximum %HRR reversal point occurred on 

November 9, P1_1109, with a %HRR of 36.4%. The 

overlapping curve area is bounded by P1_1101, P1_1103, 

and P1_1109, as shown in Fig. 4, which can be regarded 

as the safety zone of fatigue load for P1's past work. 

 

 

Figure 4. Fatigue Load Data Point Plots and 

Fitting Curves for Worker P1 

The main work item day of P4 is the overhead crane 

operation, and 13 days of monitoring %HRR data are 

simulated. The coefficient of determination R^2 all falls 

above 0.98, with high interpretation power, the root mean 

square error RMSE and the mean absolute error MAE 

of %HRR obtained from the simulated curves are less 

than 4%, and the regression curves have a high degree of 

feasibility. The maximum %HRR anticlip occurs in 

P4_1102 on November 2, with a %HRR of 36.4%. The 

overlapping curve area of each day is bounded by 

P4_1109, P4_1112, P4_1102 and P4_1107 as shown in 

Fig.5, and this area can be regarded as the fatigue load 

safety zone of P4 in the past work. 

 

 

Figure 5. Fatigue Load Data Point Plots and 

Fitting Curves for Worker P4 

The primary working day of P9 is cart driving, 

which belongs to the category of mechanically operated 

work with lower loads. Eleven days of %HRR data were 

simulated, and except for one day, P9_1106, which has a 

relatively small amount of data, with a coefficient of 

determination of R^2 of 0.94, an RMSE of 6.5%, and an 

MAE of 5.4%, and the regression result is a little bit 

lower, most of the other days' R^2 falls above 0.97, which 

is of high interpretative power. The root mean square 

error (RMSE) and the mean absolute error (MAE) 

of %HRR obtained from the fitted curves are mostly less 

than 4%, which means that the regression curves have a 

high degree of reliability. The most significant %HRR 

inversion point occurs on November 12, P9_1112, with 

a %HRR of 40.4%. The overlapping curve area of each 

day is bounded by P9_1106 and P9_1112, as shown in 

Fig.6, and this area can be regarded as the fatigue load 

safety area of P9 in the past work. 

 

 

Figure 6. Fatigue Load Data Point Plots and 

Fitting Curves for Worker P9 

 

5 Conclusion 

This study develops a customized wearable IoT-PPG 

heart rate bracelet and wireless sensing system, which 

can be used for continuous sensing during the whole 

working day. It is field-proven to be applied to the 

physical and mental health and safety management of 

tunnel workers in a submerged tunnel, which is better 

than traditional tunnel personnel management.In addition, 

in this study, the accumulated physiological values of 

workers were used to synthesize the equation y =
𝒄

(𝟏+𝒆(−𝒂×(𝒙−𝒃))) 
, which is composed of three unknowns, 

using Python. This equation has a high explanatory 

power and a low error, and it can be used to superimpose 

the cumulative curvilinear inversion point of %HRR over 

a few days as a warning value to establish a model of the 

safety zone for workers' fatigue load in the confined 

space of the construction industry. When the %HRR of a 

worker's future work exceeds the warning value, it is 

possible to pay appropriate attention to the worker's 

workload situation and adjust the working hours to 

reduce the occurrence of fatigue, which can be used as a 

reference for future related studies.  

In the future, the data processing algorithm of this 

study can be extended and applied to other workplaces 

with harsh environments such as high temperature, high 

altitude, etc., to develop a logistic regression model for 
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continuous %HRR workload prediction so as to establish 

the prediction of workers' residual physical capacity and 

the management of precise working hours. 
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