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Abstract –  

An omnidirectional (i.e., 360°) camera is an 

efficient device that can capture the status of a room 

with a single shot. To detect objects in a spherical 

image captured by a 360° camera, the image should 

be flattened and divided into patches reflecting 

normal fields of view (NFoV). However, detecting 

indoor defects in omnidirectional camera images is 

difficult because they are relatively small and span 

multiple patches. Another challenge is to set the 

appropriate size for an NFoV patch. To overcome 

these challenges, this paper proposes a method to 

locate possible regions of indoor defects using 

building information modeling (BIM). The core idea 

is to subtract a 360° camera image from a 

photorealistically rendered BIM model image of the 

same location. Bounding boxes are generated around 

the areas where differences are detected. The 

proposed method was tested in a single room with 

artificially implanted cracks. In the experiments, two 

different omnidirectional cameras were used. The 

image classification algorithm was trained on open 

crack datasets. The results showed that the proposed 

method improved the F1-score from 0.15 to 0.39 and 

recall from 0.16 to 0.87. The proposed method could 

detect more cracks while reducing the number of 

patches needed for indoor crack inspection compared 

to the traditional method. 
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1 Introduction 

Indoor defect inspection is a crucial task for 

construction companies to ensure customer satisfaction 

and maintain the quality of work. Since a unit’s condition 

directly impacts residents, defects in the interior can 

result in numerous complaints, claims, and even 

litigation [1]. These conflicts have negative impacts on 

construction companies’ brand images, leading to 

financial damage [2]. Therefore, in industry and 

academia, methods for efficiently managing defects have 

been continuously required. 

The methods of inspecting for indoor defects keep 

advancing, from visual inspection to increased reliance 

on low-cost, high-performance, easy-to-use devices and 

advanced technology. These technologies provide 

opportunities to tackle the challenges associated with the 

laborious, time-consuming, and error-prone methods of 

physical visual inspection [3–6]. However, detecting 

indoor defects in an equirectangular image is still 
difficult because indoor defects are relatively small 

compared to general objects.  

This study proposes a method to identify indoor 

defect regions using pixel-wise subtraction of the on-site 

image from the photorealistically rendered building 

information modeling (BIM) image. Cracks were 

selected as the target defect type for inspection. The 

proposed method was validated through an experiment 

that involved implanting cracks of various sizes in a 

single room while capturing indoor scenes using two 

different off-the-shelf omnidirectional cameras. The 

results of detection performance and time for inference 

using the traditional method and the proposed method 

were compared. 

2 Background and Related Studies 

The omnidirectional (i.e., 360°) camera is an efficient 

and easy-to-use device that can capture a comprehensive 

view of an area in one shot. As such, 360° cameras are 

utilized for inspecting enclosed spaces, such as tunnels, 

pipes, and culverts [7–9], as well as collecting indoor 

scene data for real estate advertising purposes [10].  

The 360° camera has also been used to capture facility 

conditions and to detect indoor defects by leveraging 

advanced image-processing technologies that can detect 

objects and classify patches. Humpe [11] has shown the 

captured visual feature from a 360° camera can be also 

utilized for autonomous crack inspection with similar 
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results to a standard high-definition camera when it is 

captured close enough. Chow et al. [4] used the 360° 

camera to capture defects on concrete surfaces and 

classify extracted patches with a deep learning-based 

image classification model. Luo et al. [12] proposed 

customized object detection models to detect defects on 

steel surfaces from extracted patches.  

Equirectangular images, another form of a spherical 

image from a 360° camera, is the format used to not only 

store and transmit a spherical image but also widely 

adopted as an input format in related studies. There are 

three general approaches to detecting objects from the 

equirectangular image. Some studies [13–16] proposed 

methods to input the whole equirectangular image into 

the trained object detector. Other approaches [17,18] are 

to input cropped patches with a flat grid into the object 

detector or image classifier. The other approaches  [4,13] 

are to input the normal field of view (NFoV) patches, 

which are divided based on a spherical grid and flattened. 

These studies have shown that the third approach 

presents a promising performance in detecting objects 

from a spherical image, including defects. 

However, the major challenge in detecting indoor 

defects from equirectangular images using the third 

approach lies in determining the appropriate size for a 

NfoV patch. The conventional method of segmenting an 

equirectangular image into NFoV patches involves 

dividing the entire image into overlapping patches, with 

the size determined arbitrarily by the developer based on 

the target size. Moreover, indoor defects are relatively 

small compared to target objects in related studies, 

resulting in an excessive number of patches. Despite 

advances in computing capacity that allow for the 

inspection of numerous image patches, suitable patch 

sizes must still be identified to minimize redundancy and 

improve analysis speed. Consequently, a region 

identification method is required to localize defects and 

reduce the number of image patches that need to be 

examined by a trained classification model.  

Therefore, this study aims to identify and localize the 

region of defects from equirectangular images to reduce 

the number of image patches that need to be examined by 

a trained classification model, thereby ensuring efficient 

automated indoor defect inspection.  

3 Methods and Implementations 

A defect region is identified from the equirectangular 

images based on the proposed sequence of modularized 

processing methods as shown in Figure 1. The proposed 

method aims to improve the traditional method of 

extracting NfoVs, which uses a spherical grid for 

classification. The detailed implementation process 

consists of eight steps, as depicted and described in the 

following sub-sections. Most methods were implemented 

using Python with the OpenCV library.  

3.1 View Generation 

Revit, which was used to generate a BIM model, did 

not support viewpoint generation on exactly designated 

coordinates using a graphical user interface (GUI). 

Therefore, an application programming interface (API) 

that could generate a view of the exactly designated 

coordinates in the BIM model was used. In this study, the 

central coordinates of the target room and the height of 

each omnidirectional camera were used as parameters for 

view generation. 

Enscape was plugged into Revit to generate 3-

dimensional photorealistic rendering images directly 

Figure 1. Overview of the proposed method. 
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from a Revit model. As Enscape was plugged into Revit, 

viewpoints from the Revit and Enscape environments 

were automatically synchronized. Enscape provides a 

feature for generating spherical images in 

equirectangular form by capturing multiple images at 

designated locations and stitching them. 

3.2 Color Matching 

Two images from different sources, regardless of how 

realistic and similar they are, inevitably have different 

distributions of pixel values because of different 

conditions, such as lighting and reflections. Therefore, 

color-matching methods were applied to reduce the gap 

between each pixel value. The pixel values of the original 

images were adjusted. Intensity refers to the pixel value 

distribution of the source image and was used to 

efficiently discard similar regions and emphasize distinct 

regions. 

3.3 Alignment 

Another merit of a 360° camera is that generated 

image can stand upright regardless of the pose of the 

device because of the inertial measurement unit (IMU) 

sensor. This, combined with the robust tripod, allows an 

on-site image to be easily aligned with the image from 

Enscape. However, the camera could be mislocated 

slightly away from the center of the target room or 

misdirected by errors from the sensors and a slanted floor. 

To mitigate these problems, an image alignment 

module was implemented. This module calculated the 

average of the subtracted pixel values and defined them 

as a target for minimization. The parameters to be 

optimized were pitch, yaw, and roll. The parameters 

could rotate on-site spherical images to align with the 

rendered images to minimize the difference between the 

two sets of images. The SciPy [19] library was utilized to 

implement the optimization process. 

3.4 Subtraction 

This section discusses the pixel-wise subtraction of 

two spherical images in equirectangular form. The 

normal subtraction operation, which subtracts the 

rendering image from the on-site image to negate 

visually similar parts, resulted in negative pixel values 

outside the valid range of 0 to 255. To handle negative 

pixel values, a unique operation was required. In this 

research, the absolute difference operation was used, 

which involves taking the absolute values of the 

subtracted pixel values. This operation ensured that the 

final values for the pixels were all positive and within the 

valid range. Using the absolute difference operation was 

particularly important because normal subtraction 

methods could result in different outcomes depending on 

the order of the minuend and subtrahend. By using the 

absolute values of the subtracted pixel values, a 

consistent measure of the differences between the 

rendered image and the on-site images, regardless of 

which was the minuend.  

3.5 Emphasis on Remaining Parts 

In ideal cases, the different parts will have high pixel 

values after subtraction while the same parts would have 

pixel values of approximately (0, 0, 0). Pixels that have 

values less than 5 are neglected by the thresholding 

operation. To emphasize the remaining features and 

denoise the subtracted result, canny edge detection was 

utilized [20]. Then, the parameter values of the low and 

high threshold for canny edge detection were 

heuristically set to 80 and 160 respectively. 

3.6 Bounding Box Generation and Merging 

The minimum bounding boxes of the emphasized 

edges can be generated using contour features from 

OpenCV. However, too many bounding boxes 

overlapped and were close to each other. Therefore, a 

distance-based bounding box merging algorithm was 

implemented with the expectation that each bounding 

box would cover a single object to be inspected. The 

distance between the bounding boxes was calculated 

based on the center coordinates of each box. 

3.7 Extracting the Normal Field of View 

Every pixel from an equirectangular image could be 

mapped on the spherical coordinate system based on the 

corresponding longitude and latitude. Therefore, 

considering the coordinates corresponding to the centers 

of the bounding boxes and the sizes of each box, the 

NFoV patches were extracted using flattening methods.  

3.8 Defect Detector and Training Datasets 

A module that can distinguish images with cracks and 

images without cracks was also implemented to validate 

the usage of the proposed method. The detector can be an 

object detection model, semantic segmentation model, or 

image classification model. Although segmentation 

models excel at detecting cracks, creating a dataset for 

indoor defects in the form of a segmentation or object 

detection task can be challenging due to the diverse range 

of defect shapes and sizes. Thus, this study chose an 

image classification model as a detector, which 

significantly reduced data preparation time and effort.  

In this research, the image classification model VGG-

19, a convolutional neural network (CNN)-based image 

classification algorithm that has demonstrated promising 
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performance for various classification tasks, was trained 

using open crack datasets  [21,22]. The datasets for 

training were secured from publicly open datasets 

[21,23,24]. The main reason for selecting these datasets 

was to produce crack features for various backgrounds 

based on the on-site crack features. 

4 Experiment 

An experiment was conducted to determine the 

validity of the proposed and implemented methods in a 

controlled environment. In this section, the specifications 

of the 360° cameras, the as-designed BIM model, and the 

implanted cracks are discussed.  

4.1 Devices Used to Acquire On-Site Images 

A single room with artificially implanted cracks was 

inspected by two off-the-shelf omnidirectional cameras. 

Devices less than $600 were intentionally selected for 

their price, considering the accessibility and 

generalizability of each device. The Insta One X2 from 

Insta 360 was around $430, and the QooCam 8K was 

around $590. Two fish-eye lenses were applied to both 

devices to acquire more than each 180° scene and to 

stitch the two images together as one spherical image. 

The major difference between the two devices is the 

maximum resolution of the footage. The QooCam 8K can 

generate an image with an 8K (7680 × 3840) resolution, 

while the other can generate a 5.7K (6080 × 3040) 

resolution.  

4.2  BIM Model Generation 

 The experiment was conducted in a real building, 

where a BIM model was generated using the as-designed 

conditions of the target room in real world. The BIM 

model was used to generate a reference spherical image, 

which was subtracted from an on-site image. Objects that 

were not described in the corresponding plan but exist in 

the physical room, such as the air conditioner, sink, pipes, 

and radiator, were neglected in the model. The detailed 

model featured objects such as power sockets, lights, 

windows, skirting, and a door. To create a photorealistic 

rendering as close to reality as possible, material 

mapping was conducted using manually acquired 

material libraries.  Finally, in order to adjust the color and 

geometrical differences between the rendered image and 

the on-site image, ‘color matching’ and ‘aligning’ 

algorithms were utilized. 

4.3 Implanting Cracks 

Since the target room did not have cracks that could 

be detected by the trained classifier, 19 cracks of various 

sizes were manually implanted. The sizes of the 

implanted cracks were intentionally determined based on 

the width and length of each crack from small to large. 

The small cracks were less than 100 𝑚𝑚2, the medium-

sized cracks were less than 1,000 𝑚𝑚2, and the large-

sized cracks were over 1,000 𝑚𝑚2.  

5 Results 

Following the traditional method, an image from each 

device generated 1,028 extracted NFoV patches, 

meaning each patch overlapped approximately 30% of 

the neighboring image. The Qoocam, which can generate 

images with a higher resolution, had the best detection 

results, securing an F1 score of 0.218 by detecting the 

largest number of cracks.  

After applying the proposed methods, the number of 

patches to be inspected decreased from 1,028 to 187 and 

118 patches, respectively, leading to increased recall and 

precision values, indicating a reduction in the number of 

false positive and false negative detection cases. The 

actual number of detected cracks using Insta One X2 

footage increased from 4 to 7 but decreased from 9 to 7 

in the case of the Qoocam images. The reason for the 

decreased number of detected cracks is that the 

traditional method gives a model multiple opportunities 

to classify the same cracks from a different perspective, 

while the proposed method only provides a single 

opportunity. Another reason is that even though overall 

detection performance was high with the high-resolution 

camera, some crack features are neglected through the 

‘emphasis on remaining parts’. 

 Considering the effectiveness that can be quantified as 

F1-score, the results indicate that the proposed method is 

valid, even though it sacrifices some number of true 

positive detection results. The detailed detection results 

are shown in Table 1. Processing time refers to the overall 

duration taken for classifying the extracted patches. With 

the VGG-19 model, 1028 patches from the traditional 

method were processed in 14 seconds while the reduced 

number by the proposed method lead to decreasing 

Condition Device (Resolution) No.  

of patches 

Processing 

Time (Sec) 

F1  

Score 

Detected Cracks  

(detected/total) 

Traditional 
method 

Qoocam (8K) 1028 13.82 0.218 9/19 
InstaOne X2 (5.7K) 1028 8.81 0.145 4/19 

Proposed 

method 

Qoocam (8K) 187 2.51 0.263 7/19 

InstaOne X2 (5.7K) 118 1.59 0.387 6/19 

Table 1. Overall Experimental Results  
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processing time to 3 seconds on an RTX 3090 GPU. The 

result signifies a substantial decrease in processing time, 

with the total time for processing reduced to 

approximately 18% of the processing time incurred by 

the traditional method. 

Five types of cracks that could not be detected before 

could be detected using the proposed methods. However, 

small cracks, shorter than 100 mm, could not be detected 

by any device using any of the methods.  

Figure 2 and  Figure 3 show the samples of true 

positive cases, while the red boxes indicate the cracks 

that were not detected by the traditional method but 

detected when adjusting the proposed method. 

 

 

Figure 2. True positive cases and after adjusting 

the methods based on InstaOne X2 images. 

 

Figure 3. True positive cases before and after 

adjusting the methods based on Qoocam images. 

6 Discussion 

The main purpose of this research, to reduce the 

number of redundant patches, was achieved using the 

proposed method. Even though it primarily inspected 

single patches for one crack feature, the proposed method 

could detect new crack features that formal methods 

could not detect. This phenomenon happens because the 

patches’ sizes and locations were determined to have 

similar visual features based on the training datasets. The 

major parts of the training images had centralized crack 

features. 

Unlike the traditional methods, the proposed method 

could also extract the region that is different from the 

clean image from the as-designed BIM model. The 

patches generated using traditional methods consist of 

many meaningless patches from floor and ceiling images, 

but the proposed methods can generate a suspected 

region that is different from the as-design image. 

Despite the achievements of this research, the results 

have several limitations. First, the trained classifier 

showed that the proposed method cannot be applied for 

practical defect inspection. Even though the detector was 

trained using numerous crack images with various 

backgrounds, the crack images from the indoor spherical 

images were unseen data. Therefore, future research is 

needed to find an appropriate detector that can 

distinguish real indoor defects on a practical level with 

securing real indoor defect datasets. 

Second, small crack features could be neglected by 

the proposed method. For example, green boxes in Figure 

2 and Figure 3 indicate cases where the traditional 

method successfully detected defects that the proposed 

method could not detect. These small crack features were 

neglected while thresholding or emphasizing the 

remaining parts after image subtraction, depending on 

user-defined parameters for the canny edge detection 

algorithm. Therefore, the optimal parameters for each 

indoor scene condition must be determined in future 

research. 

Third, the location of the camera for on-site image 

acquisition may not have been in the exact center of the 

target room. Although several modules were devised to 

mitigate this issue, images acquired from a completely 

misplaced device cannot be assessed using this method.  

In future research, the center points must be accurately 

secured by leveraging additional methods, such as 

simultaneous localization and mapping (SLAM). 

This method was developed aiming at detecting 

cracks and other types of defects during construction or 

the pre-occupancy inspection before furniture, home 

appliances, and electrical fixtures are installed. However, 

any visual inspection using cameras has a disadvantage 

in that it can only work on visible things. The proposed 

vision-based method has this inherited limitation. 

7 Conclusion 

An omnidirectional camera is an efficient device for 

the inspection of rooms because it can capture the whole 

scene of the target space at one time. However, 

traditional methods for detecting defects using spherical 

images have been difficult to implement because a crack 

occupies a small portion of an image and because there is 

ambiguity regarding the appropriate size of the NFoV 

patches. Therefore, a method to extract regions suspected 

of having defects was proposed as a sequence of modules. 

The proposed method was validated through a lab-

conditioned experiment. The results showed that the 

proposed method could effectively reduce the number of 

NfoV patches to be inspected while ensuring the same or 

even better detection performance than the traditional 
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method. This method is expected to decrease the number 

of false positive cases and reduce the overall inspection 

time. Ultimately, the proposed method is expected to 

offsets the time and effort required to create a rendering 

image when it applied to defect inspection of numerous 

units of identical housing types, such as apartment units. 

Our future research will focus on determining proper 

detectors and ways to train them to identify patent indoor 

defects. Additional methods must be applied to ensure 

that the camera is in the correct location and position. 

Finally, experiments for validation must be conducted at 

a site featuring real defects. 
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