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Abstract – 
Planning, monitoring, and maintenance of 

highway assets is an essential, long-term operation for 
successful civil infrastructure management. These 
monitoring and maintenance activities are usually 
carried out manually, suffering from time-consuming, 
costly, potentially dangerous tasks. The 
advancements in Unmanned Aerial Vehicles (UAVs) 
and computer vision technologies have demonstrated 
the potential to enable automation of the monitoring 
workflows. Existing UAS-based approaches are used 
for various management; however, there was no study 
to examine the feasibility of aerial image-based 
computer vision algorithms for the purpose of lawn 
condition monitoring. This study aims to provide 
periodic and easy-to-use UAV technology for civil 
infrastructure maintenance. We developed the 
comprehensive framework from UAS data collection 
to build a deep learning model suitable to distinguish 
areas of interest with vague boundaries robustly, 
process the outputs into geo-database, and visualize 
them through a Geographic Information Systems 
(GIS) platform. The outcome of the proposed 
framework displays the overall mowing quality in the 
highway environment in an intuitive way to support 
decision-making in the management. 
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1 Introduction 
Roadways are one of the most vital infrastructures 

necessary for public transportation and industrial 
operations. To secure the robustness of roadway 
infrastructure, the roadway infrastructure condition (e.g., 
road condition monitoring, lawn condition monitoring) is 
monitored and assessed for maintenance needs. These 
inspection, maintenance, and post-maintenance 

inspection are often carried out manually with visual 
inspection by trained inspectors. Thus, it is often time-
consuming, laborious, and expensive. One of such tasks 
is lawn mowing control on the roadway infrastructure. 
Typically, the goal of lawn mowing maintenance 
personnel is to verify if the mowing performance carried 
out by a third-party contractor is acceptable, identify any 
poorly mowed regions that require additional mowing, 
and bared regions that require maintenance. Thus, such 
lawn mowing control requires significant time and 
resources due to visual observation and manual 
measurement to verify the mowing performance. Failure 
to do so may cause traffic safety issues because tall grass 
can obscure drivers' vision and may not see traffic control 
devices or pedestrians [1]. 

The recent advancement of computer vision 
algorithms and the prevalent use of UAVs offers a great 
potential for automation in highway landscape 
maintenance practices. In particular, UAVs equipped 
with RGB cameras provide an easy-to-use and 
inexpensive platform to obtain lawn condition 
information of the field readily. UAVs can capture 
images of areas where maintenance work was performed, 
including areas of difficulty (e.g., steep slope). 
Maintenance personnel can monitor the lawn mowing 
conditions more frequently and easily by analyzing these 
aerial images.  

To fully utilize the computer vision-based monitoring 
method, the following limitations should be addressed: 1) 
to deal with the variability of lawn condition images due 
to the range of seasonal lawn condition and the different 
resolutions of aerial images captured at different heights 
and angles, and 2) the analyzed output needs to be 
directly mapped onto the actual physical 3D coordinates. 
To overcome these limitations, we propose a 
comprehensive, data-driven automated mowing 
condition monitoring framework integrated with a user 
interface that visualizes the outcome in a user-friendly 
manner. We developed a computer vision-based lawn 
condition monitoring system that adopts fully 
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convolutional neural networks to perform pixel-wise 
classification of the aerial images. We examined the 
feasibility of utilizing computer-vision technologies in 
the mowing condition maintenance work and evaluated 
the proposed system with actual test cases. The outcomes 
of this study are particularly beneficial for practical 
applications and support the decision-making process. 

2 Related Work 

2.1 Civil Infrastructure Monitoring 
Monitoring and maintenance of civil infrastructure 

are paramount and have been a significant interest in 
society. It is crucial to promptly detect and identify the 
location of possible areas requiring necessary 
maintenance because the failure to do so can lead to 
traffic congestion, driver discomfort, and potential safety 
and operational problems. Traditionally trained 
personnel carried out onsite visual observation [2]. These 
practices are non-trivial tasks requiring significant 
resources, and they can be subjective and error-prone as 
the outcome is highly dependent on the expertise of the 
onsite personnel. Acknowledging the limited amount of 
resources in contrast to the vast volume of areas to be 
monitored, the recent advancements in visual data 
collection hardware such as UAVs as well as computer 
vision techniques to analyze the collected visual data 
have demonstrated its potential opportunities to automate 
civil infrastructure monitoring processes [3]. Several 
examples of UAV-based inspection applications are 
agricultural crop and weed monitoring [4–6], road 
inspection applications [7], and construction and 
infrastructure monitoring [8]. 

Despite the increasing applications of UAV and deep 
learning in the civil engineering domain, UAV 
application has not yet been widely researched in the 
field of highway mowing and maintenance services. 
Lawn mowing control on the roadway infrastructure 
requires significant time and resources for prompt 
maintenance. However, lawn mowing control poses 
several challenges. Firstly, it requires the person to 
distinguish areas of interest with vague boundaries 
granularly. Also, the processed information needs to be 
transferred to spatial context information to capture the 
physical location of interest areas. 

2.2 UAV Image Segmentation and 
Classification 

With the prevalent use of UAVs, UAVs gained 
growing attention for various monitoring applications 
because they can cover large areas with high-resolution 
imagery in an inexpensive way. To this end, image 
segmentation using aerial images captured by UAVs is 

also a widely studied topic. For example, in the 
agricultural areas, UAV images were used to identify 
weeds from the grass areas [4]. In civil engineering 
domain, aerial and satellite images were used to assess 
infrastructure damage in natural disaster areas [9]. In 
addition, aerial images coupled with machine learning 
techniques were used to map the rural environment, 
classifying them into roads, vineyards, asphalt, and roofs 
[10]. 

Although there have been studies that demonstrated 
the capacity of the UAV image segmentation method, 
there are several challenges to be addressed to deploy in 
the lawn mowing condition monitoring application. First 
of all, there is a lack of annotated datasets to develop a 
segmentation model. Secondly, there is a high intra-
variability within the grass conditions based on the 
seasonal and weather factors (e.g., lighting conditions) 
and camera factors (e.g., image resolution). To address 
these limitations, this study aims to develop a framework 
that can collect and annotate datasets and develop a 
robust segmentation algorithm for the variance in the 
collected dataset.  

3 Methodology 
This study proposes an overall lawn condition 

classification framework leveraging UAVs equipped 
with camera sensors. Our proposed framework aims to 
collect a large volume of dataset for lawn mowing 
condition monitoring and develop a segmentation 
algorithm to classify the vegetation conditions into three 
classes of maintenance personnel’s interests: mowed, un-
mowed, and bared spot, as illustrated in Figure 1. We 
defined a mowed condition as regions where grass height 
is less than 6 inches, an un-mowed condition as regions 
where grass height is over 6 inches, and a bare spot as 
regions where no grass is detected.  

[Fig 1] Examples of lawn conditions: (a) bare spot, 
(b) un-mowed, and (c) mowed lawn condition

We developed a pixel-wise classification that assigns 
one of the lawn condition labels to each input image pixel. 
To automate the annotation process, we labeled the 
dataset using the 3D semantic segmentation method that 
converts 3D points into 2D images [11].  The overall 
framework is depicted in Figure 2. 

(a) (b) (c)
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[Fig 2] Overview of the proposed framework

3.1 Network Architecture 
This section describes how our overall framework 

utilized the image processing algorithms to distinguish 
the various grass conditions. We adopt U-Net model [12], 
which is one of the most widely-used network 
architecture for semantic image segmentation. U-Net has 
an encoder-decoder structure with fully convolutional 
network, as illustrated in Figure 3. The first component 
of the architecture, the encoder, consists of alternating 
convolution and pooling operations, allowing the model 
to progressively increase the number of feature maps by 
downsampling feature maps. The decoder part of the 
model then upsamples the feature map and semantically 
projects the features learned by the encoder onto the pixel 
space to obtain classification results. Overall, this 
structure of contracting and expansive operations enables 
to capture of the localized segmentation of the input 
image and propagates the feature information to 
successive layers with higher resolutions. Due to this 
robustness to precise segmentation, this study utilized 
this architecture to capture fine details of the images.  

[Fig 3] U-Net architecture 

3.2 Data Collection and Preprocessing 
3.2.1 Aerial Image Collection 

For data collection, a DJI Marvic Pro and DJI Marvic 
2 Pro with 4K cameras and a GPS sensor were deployed. 
Using a public open mobile application, DJI Go 4 and 
PIX4Dcapture, a licensed drone pilot set up the flying 
path and selected the boundaries of the vegetation areas 
to be collected. The drones automatically captured the 
images at different elevations and angles based on the 
flight parameter input, including flight speed, altitude, 
and camera angle.  

3.2.2 Image Annotation Process 

As the image collected from UAV inherently contains 
a significant area of overlap, a 2D-3D co-labeling method 
[11] that can label the same area only once was adopted
to generate image annotations efficiently. First, the
collected aerial images were processed through the
Structure-from-Motion (SfM) and converted into 3D
point cloud data. With respect to the manual 3D
annotation, semantic labels were assigned to the original
drone images by utilizing the camera projection equation.
Since each image's camera intrinsic and extrinsic
parameters were known after the SfM step, each 3D point
can be associated with a 2D pixel. This approach offers
an efficient annotation method because it can produce
labels of all aerial images with a one-time manual
annotation process.

3.2.3 Data Augmentation 

We applied a patch augmentation strategy to make the 
classification model robust to the variability of 
vegetation conditions and Ground Sampling Distance 
(GSD). It processed an n×n grid over the original image 
and its corresponding ground truth. The image is then 

UAV-based Aerial Image Collection Patch Augmentation
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divided into small pieces, which are treated individually, 
as depicted in Figure 4. Since the input size of deep 
learning architecture is much smaller than that of the raw 
drone images, it can be expected to increase of GSD 
range in the training dataset.  

[Fig 4] Patch-based data augmentation 

4 Experiment 

4.1 Data Collection 
We applied our method to several highway locations 

in Atlanta, Georgia. Figure 5 shows the drone data 
collected at actual highway environments: the I-675 
Highway that is maintained by the Georgia Department 
of Transportation (GDOT). The total area of the location 
is approximately 1.742 (acre), and the length along the 
primary axis is 150 (m). The data collections were 
regularly performed to monitor a wide range of grass 
conditions at different mowing conditions and seasons, 
as illustrated in Table 1. The test environment includes 
roads, vegetation, trees, and other objects.  

The flight parameters of the UAV consist of flight 
elevation between 30 to 50 (m) from the ground, GSD of 
0.99 – 1.64 (cm/pixels), and camera angles of 45, 60, and 
90 degrees. An individual combination of the flight 
parameters was tested to find the optimistic performance 
of assessing mowing quality. A trained pilot with an 
observer controlled the drone’s flight and monitored the 
process to take control of the automated flight if needed. 

To acquire ground truth of lawn mowing condition, 
visual inspection and tape measurements were manually 
conducted at several locations. Based on the 15cm 
threshold of grass height, the ground truth of indicating 
mowed and un-mowed areas was generated for each data 
collection. These ground truths are used to validate the 
proposed annotation process.  

[Fig 5] Test location under different field conditions 
collected on (1) Jul 22 and (b) Nov 11, 2021.  

4.2 Development of grass condition 
assessment algorithm using image data 

A customized dataset of over 700 aerial images was 
used to train the proposed U-Net, and the corresponding 
labeled segmented images. We employed a total of 4 
classes, namely mowed, un-mowed, bare spot, and 
miscellaneous classes, which include non-grass regions 
such as roads, guardrails, signages, and trees. To improve 
the model's performance, we experimented with different 
the GSD of drone images and determined the final input 
image size. That is, after downsampling to the deep 
learning input size, the GSD of 20~25cm/pixels, and can 
be prepared by dividing each original image into four 
split images in our flight parameters. 

Finally, the dataset was divided for training, 
validation, and testing. The validation dataset was used 
to tune the hyperparameters of the model that maximize 
the model accuracy and minimize the sparse categorical 
cross-entropy loss function. The validation loss is 
monitored to ensure that there is no overfitting or 
underfitting during the training process. 

4.3 Experimental Evaluation 
For evaluation, we produced pixel-wise classification 

results for input images. To quantitatively validate the 
performance of our proposed classification framework, 
we utilize a metric of accuracy, precision, recall, and F1 
score, which is the dominant evaluation criteria for the 
image classification task.  

5 Results 

5.1 Experiment Results 
We analyzed the performance of our proposed 

framework. Figure 6 shows the examples of classification 
results. The green, blue, and red color legends indicate 
the lawn conditions of mowed, un-mowed, and bare spots, 
respectively.  

We tested our model in different datasets of grass 
conditions (Table 1) to check the robustness of our model 
in terms of handling intra-variability. The overall 
accuracy was 87.5%, indicating that our model can 
produce acceptable outcomes across different grass 
conditions, except for data collected on Nov 11, which 
had precision and recall values lower than 80%. We 
believe that this low performance is attributed to the 
distinctive characteristics of this dataset due to the new 
construction of building in the test location as illustrated 
in Figure 5. This resulted in drastic changes in the 
features of the images. 

In addition, we evaluated our model in terms of 
different classes. Table 2 shows the accuracy results for 
each class. Compared to other classes, bare spot scores 
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the lowest accuracy by a large margin. This is due to class 
imbalance, the lack of a bare spot in the whole dataset. 
Figure 6 (c) illustrates the relatively very small area of 

bare spot compared to other grass condition classes. 
Therefore, the failure of spotting a small bare spot 
impacted the overall accuracy a lot.

[Fig 6] Image segmentation results 

Table 1. Overall Performance of the Proposed Framework 

Collection Date May 14, 2021 July 22, 2021 July 30, 2021 November 11, 2021 
Accuracy 0.872 0.826 0.891 0.912 
Precision 0.876 0.768 0.815 0.411 

Recall 0.876 0.730 0.874 0.401 
F-1 0.811 0.729 0.823 0.405 

Table 2. Performance of Lawn Mowing Condition Class 

Mowed Un-mowed Bare Misc 
Accuracy 0.989 0.994 0.995 .985 
Precision 0.945 0.888 .473 .766 

Recall 0.959 0.908 .497 .988 
F-1 0.946 0.895 .468 .863 

5.2 Geo-Referencing and Digitization 
In addition, we mapped the image-level classification 

results onto the geo-referenced highway site to provide a 
more user-friendly, informative results. Each orthophoto 
was produced by stitching and smoothening whole drone 
images into the whole site was deployed.  

To do so, an orthophoto of the highway site was 
firstly split into multiple patches of the interpretable size 
in the trained model. Then, each patch was inferenced 
and reverted into the original position while preserving 
coordinate reference systems. Fig 7 shows an output of 

being geo-referenced and digitized classification map in 
a raster data format. This enables lawn monitoring 
managers to visualize mowing quality and make decision 
upon Geographic Information Systems platform. Fig 8 
shows the final output in the GIS platform. 

Original Image Ground Truth Prediction 

(a)

(b)

(c)
Bare spot

Mowed

Un-mowed

Miscellaneous

448



39th International Symposium on Automation and Robotics in Construction (ISARC 2022) 

[Fig 7] Result with Geo-referencing and Digitization 

[Fig 8] Implementation on the GIS platform 

6 Discussion  
The results demonstrated the potential benefits of our 

proposed system, there are several limitations to 
overcome for practical issues for real-world application. 
First, for practical purposes, orthophoto provide more 
useful information than a single drone image because it 
provides the overview with the location information. 
However, the accuracy of orthophoto classification is 
lower compared to that of the original aerial image. This 
is because generating orthophoto causes some texture 
and color information loss while multiple images are 
smoothed out and switched together. As a result, 
orthophoto suffers from low-resolution, incompleteness, 
lost texture information.  

Secondly, the capacity of our proposed model is 
limited in terms of the highway assets coverage. Several 
vertical highway assets such as poles are not well 
detected.  

In the future works, these above-mentioned issues can 
be mitigated by the integration of 3D model.  Aerial 
images from tilted views will be utilized to generate 3D 
highway scene, and the 3D model will be overlapped 
with 2D images to further train the classifier.  

7  Conclusion 
In this study, we showed the feasibility of aerial 

image-based computer vision algorithms for the purpose 

of lawn condition monitoring for highway assets. Our 
proposed framework expanded the application of 
computer-vision and drone technology. With the user-
friendly GIS-based visualization, it will support the lawn 
monitoring personnel to easily verify the mowing 
performance of the contractors and better manage the 
highway assets condition. 
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