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Abstract 

Project managers in the construction industry 

confront challenges in managing inventories and 

executing projects within the scheduled time frame. 

In this research, a mathematical model is given for 

applying the Lagrange method and linear 

programming to tackle the time-cost and storage-

related difficulties that arise in the construction 

project. The study's objectives are to 

minimize total cost escalation and ascertain the 

ideal order quantity for the building project while 

considering non-negative, start, crash, and floor 

space limits into account. The ideal order quantity 

is determined using MS Excel, and LINDO 

software determines the crashing duration. 

Program analysis produced a workable solution. 

The model maintains the analysis's accuracy and 

the outcomes' correctness.  By increasing the 

project's cost, the linear programming approach 

predicts when each task will take less time to 

complete. The EOQ model was proposed to 

determine the optimal order quantity of building 

supplies. Adopting this technology can yield instant 

benefits for any real-time construction job. 
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1 Introduction 

Project management is a study that involves the 

application of skills, tools, and techniques to meet the 

project requirements. Whenever the project gets 

delayed and runs behind schedules, the overall indirect 

cost increases. Usually, project duration can be 

reduced by crashing activities and assigning more 

resources. Construction of a project with a normal 

duration will ensure specific resources and direct 

costs. In contrast, the same project is constructed under 

the crashing method, decreasing project duration and 

escalating the cost to the allowable percentage. A 

study developed an optimum solution for time and cost 

using ant colony optimization without dominating 

either function. Zhang presented a time-cost 

optimization problem using the ant colony method. To 

deal with the multi-objective problem, a modified 

weight approach was implemented to combine time 

and cost as a single objective[1]. Mondal proposed an 

intuitionistic fuzzy geometric programming to solve 

the deterministic single objective problem[2]. This 

study was conducted in an apartment consisting of 9 

floors located in Bangalore. This paper proposes a 

mathematical model to solve the time-cost and 

storage-related problems in the construction project 

using linear programming and the Lagrange method, 

respectively[3]. The study aims to optimize the overall 

cost escalation and determine the construction 

project's optimum order quantity under start time, 

crash time, non-negative, and floor space constraints. 

To determine the crash duration and optimum order 

quantity, LINDO Software and MS Excel are used, 

respectively. 

2 Background 

The time and cost optimization technique 

decreases the total float available for non-critical 

activities and decreases the flexibility of the schedule. 

There is always a need to establish a new method for 

time and cost such that it can provide optimum time 

and cost value. The author has attempted nonlinear 

integer programming using the best solver technique, 

which can be applied to a real-time project[4]. 

Whenever there is a trade-off between time and cost, 

the duration of the project will decrease, and the cost 

will increase. The results obtained proved the model is 

significant. It helps the project manager execute 
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different trade-offs between time and cost[5]. A study 

proposed an intuitionistic fuzzy geometric 

programming to solve the deterministic single 

objective problem. Intuitionistic fuzzy geometric 

programming can also solve economic order quantity 

with a deterministic single objective model with floor 

space constraint. Any variable such as limited 

production cost, time-dependent and independent 

holding cost can be considered. Intuitionistic fuzzy 

geometric programming can be extended by existing 

fuzzy geometric programming to solve nonlinear and 

linear optimization problems. This method can 

minimize the total average cost of the EOQ model by 

applying intuitionistic fuzzy geometric programming. 

Intuitionistic fuzzy geometric programming is more 

feasible and preferable than crisp and fuzzy geometric 

programming[2]. The cost factor has to lie within a 

permissible range. The company will face huge losses 

if the cost exceeds the permissible range. Table 1 

shows the percentage cost escalation from literature 

using different methods. It shows that, the average 

permissible cost escalation can be 1.0% - 1.3%.  

Table 1. The percentage cost escalation 

Author Method % Cost 

Escalation 

Uroš 

Klansek [6] 

Nonlinear 

Programming 

1.16 

Mohammed 

Woyeso 

Geda[7] 

Linear 

Programming 

1.11 

Omar M. 

Elmabrouk 

[8] 

Linear 

Programming 

1.09 

Michael J. 

Risbeck [9] 

Mixed-Integer 

Linear 

Programming 

1.12 

Athanasios P 

et al  [10] 

Approximation 

method 

1.96 

Michael J. 

Risbeck at al 

[11] 

Mixed-Integer 

Linear 

Programming 

2.09 

Ehsan 

Eshtehardian 

at al [12] 

GA and fuzzy 

sets theory 

1.4 

Rana A. Al 

Haj et al [5] 

Nonlinear-

Integer 

Programming 

0.99 

Mohammed 

Nooruldeen 

Azeez et al 

[13] 

Ant Colony 

Optimization 

1.05 

Yanshuai 

Zhang et al 

[1] 

Ant Colony 

Optimization 

0.75 

 

3 Methodology 

In this research, the following methodology is 

framed in Figure 1 to achieve the study's objectives, 

which are to minimize total cost escalation and 

ascertain the ideal order quantity for the building 

project while taking non-negative, start, crash, and 

floor space limits into account.  

 

Figure 1. Methodology chart 
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Technical specifications in the research included: 

i. Activity on Node used to determine the 

network logic for the project schedule.  

ii. The cost slope is the slope of the direct cost 

curve, approximated as a straight line. It is 

defined as follows.  

 𝐶𝑠  =  
𝐶𝑐 − 𝐶𝑛

𝑡𝑛 − 𝑡𝑐

 =  
∆𝐶

∆𝑡
 

      

(1) 

Where: 

Cs Cost slope 

Cc Crash Cost 

Cn Normal Cost 

tn Normal Time 

tc Crash Time 

∆𝐶 Change in cost 

∆𝑡 Change in time 

iii. Linear programming is a technique used in 

mathematics to optimize processes under 

limitations. Maximizing or minimizing the 

target function is the aim of linear 

programming. The optimization is done 

using the LINDO program, which has a high 

degree of ease in solving complex functions.  

4 PROPOSED EOQ MODEL  

The best order amount a business or organization 

should buy to reduce inventory expenses, including 

holding costs, shortfall costs, and order costs, is the 

economic order quantity, or EOQ. Finding the ideal 

quantity of product units to order is the goal of the 

economic order quantity. If successful, a business can 

reduce the price of purchasing, shipping, and storing 

units. Production levels and order intervals are also 

determined using the economic order quantity model 

to maintain the ideal inventory level. The software can 

coordinate supply chain networks and logistics with 

the economic order quantity model. In cash flow 

analysis, the model is equally crucial. The approach 

can assist a business in managing the cash flow related 

to its inventory. In the EOQ model as shown in figure 

2, the reorder point is defined as the point at which the 

inventory is about to fall. Economic order quantity is 

responsible for reordering, the cost incurred while 

placing an order, and storing the materials. 

 

Figure 2. Algorithm To Solve the EOQ Model 

 In the construction industry, projects face high 

inventory costs because of the need for more floor 

space to keep the materials. To minimize the total costs 

of inventory, an Economic order quantity model with 

floor space constraints is developed using the 

Lagrangian function. The concept of EOQ is to 

determine the optimum order quantity of each material 

for the available floor space. This model can help 

construction engineers manage and control the 

inventory and facilitate ease of construction. The 

project has limited warehouse capacity, and the items 

compete for floor space. The available floor space in 

the construction project is 376 sq. m. To construct the 

model, the following assumptions are made: 

Production or supply is instantaneous with no lead 

time. Demand is uniform and deterministic. Shortages 

are not allowed. Suppose there are N-items to be stored 

in an inventory system; then - 

The total unit cost for all the items is given by: 
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TC =  ∑ (0.5 ∗ 𝑃𝑐𝑖 ∗ 𝐼𝑐𝑖 ∗ 𝑄𝑖 +  
𝑅𝑐𝑖  ∗ 𝐷𝑖

𝑄𝑖

 )

n

i=1

 

                                                                 (2) 

Where,  

Di – Demand rate for ith item 

Pci – Purchase cost of ith item 

Rci – Replenishment cost for ith item 

Ici – Inventory carrying cost fraction 

per unit per annum for ith item 

Qi – Order quantity for ith item 

 

 

 

4.1 Application of LP Model 

The case study is conducted in prestige pine wood 

apartments in Bangalore. Due to the extreme weather 

conditions, the project faced a delay in its completion. 

All the activities from the project have been grouped 

under 16 significant activities. To model, it is essential 

to determine the ES-EF and LS-LF in terms of starting 

and ending events. It is observed that the total duration 

for completion of the project is 2598 days based on the 

critical path. The list of essential activities under the 

critical path are: Earthwork excavation, Soil nailing, 

Retaining wall, Grade slab, Pedestal and column 

construction, Backfilling, Stitch slab, Reinforcement 

works, Concrete works, Brickworks, Water supply and 

sanitation works, Electrical works, Plastering works, 

Flooring works, Painting works, Wooden works. 

There were seven possible ways to reach the final 

activity. The normal time (NT) and the crash time (CT) 

are calculated individually for all seven possible paths. 

The path with the maximum normal and full crash time 

is chosen for crashing. The maximum time the project 

can take to complete is 2511 days, and the maximum 

crashing time allowable is 2288 days. 

 2511 days >= Xi  >= 2288 days 
        

    (16) 

  Where 𝑿𝒊 = Amount of time that each activity i will 

be crashed 

Yi = Start time of activity i  

Ui = Change in cost by change in time for activity i 

Table 2 shows the cost slope for all activities. 

The value of 𝑼𝒊 can be written as shown in Table 3. 

Table 2. Determining the cost slope 

Ac

tiv

ity 

ID 

Norm

al 

Time 

(days

) 

Crash 

Time 

(days

) 

Norm

al 

Cost 

(Rs) 

Crash 

Cost 

(Rs)  

Cost 

Slope 

(Cs) 

1 56 37 

1,16,

61,84

0 

130326

40 

72147.3

6 

2 37.5 30 
7350

00 
750750 2100 

3 15 13 
1056

873 

106487

3 
4000 

4 51 46 
1829

7190 

183121

90 
3000 

5 34 34 
1470

547 

147054

7 
0 

6 11.5 6 
1711

304 

174380

4 
5909.09 

7 50 45 
1829

7190 

183121

90 
3000 

8 417 371 
1406

4681 

141704

81 
2300 

9 365 332 

2227

0983

7 

222815

437 
3200 

10 292 271 

4,57,

26,13

5 

4,57,66

,135 
1904.76 

11 80 80 
88,41

,000 

88,41,0

00 
0 

12 73 73 
88,41

,000 

88,41,0

00 
0 

13 486 459 
2482

3281 

248752

81 
1925.92 

14 331 303 
1966

3020 

197582

20 
3400 

15 226 201 
2718

0189 

272301

89 
2000 

16 73 73 

2998

2541.

38 

299825

41.4 
0 
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Table 3. Determining the 𝑈𝑖value 

U1 U2 U3 U4 

72147.3 2100  4000  3000  

U5 U6 U7 U8 

 0 5909.09   3000 2300  

U9 U10 U11 U12 

 3200 1904.76   0  0 

U13 U14 U15 U16 

1925.92 3400 2000 0 

 

To Determine the Objective Function and Constraints 

of the LP Model: 

Minimize Z = 72147.3 X1 + 2100 X2 + 4000 X3 + 

3000 X4 + 0 X5 + 5909 X6 + 3000 X7 + 2300 X8 + 

3200 X9 + 1904.7 X10+ 0 X11 + 0 X12 + 1925 X13 

+ 3400 X14 + 2000 X15 + 0 X16 

Subject to the conditions mentioned in Table 4, all the 

activities' crash time constraints are shown. 

Table 4. Determining Crash Time Constraints 

Crash Time Constraints 

X1<=19 X5<=0 X9<=33 X13<=27 

X2<=7.5 X6<=5.5 X10<=21 X14<=28 

X3<=2 X4<=5 X11<=0 X15<=25 

X4<=5 X8<=46 X12<=0 X16<=0 

 

Table 5 shows the Start time constraints of all the 

activities. 

 

 

 

 

 

 

Table 5. Determining Start Time Constraints 

Start time Constraints 

Y2-

Y1+X

1>=56 

Y6-

Y5+X5

>=34 

Y10-

Y9+X9

>=365 

Y13-

Y12+X

12>=73 

YF-

Y16+X

16>=73 

Y3-

Y1+X

1>=56 

Y7-

Y6+X6

>=11.5 

Y11-

Y10+X

10>=29

2 

Y14-

Y13+X

13>=48

6 

YF<=2

367 

Y4-

Y3+X

3>=15 

Y8-

Y7+X7

>=50 

Y12-

Y10+X

10>=29

2 

Y15-

Y14+X

14>=33

1  - 

Y5-

Y4+X

4>=51 

Y9-

Y8+X8

>=417 

Y13-

Y11+X

11>=73 

Y16-

Y15+X

15>=22

6  - 

 

Table 6 shows the non-negative constraints of all the 

activities. 

Table 6. Determining Non-Negative Constraints 

Non-Negative Constraints 

X1

>=

0 

X5

>=

0 

X9

>=

0 

X1

3>

=0 

Y1

>=

0 

Y5

>=

0 

Y9

>=

0 

Y13

>=0 

X2

>=

0 

X6

>=

0 

X1

0>

=0 

X1

4>

=0 

Y2

>=

0 

Y6

>=

0 

Y1

0>

=0 

Y14

>=0 

X3

>=

0 

X7

>=

0 

X1

1>

=0 

X1

5>

=0 

Y3

>=

0 

Y7

>=

0 

Y1

1>

=0 

Y15

>=0 

X4

>=

0 

X8

>=

0 

X1

2>

=0 

X1

6>

=0 

Y4

>=

0 

Y8

>=

0 

Y1

2>

=0 

Y16

>=0 

 

4.2 Application of EOQ Model 

The EOQ model is demonstrated using three 

different materials: Steel (Q1), Granite flooring (Q2), 

and Solid concrete block (Q3). The available floor 
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space 'f'' in the construction project is 376 sq.m. The 

project data is given in Table 7 below.  

Table 7. Determining Material Parameters 

Parameters Q1  Q2 Q3 

𝐷𝑖  1900 2000 10000 

𝑃𝑐𝑖  34 32 10 

𝑂𝑐𝑡  100 150 180 

f  (sq. m) 12 11.9 1.2 

 

The values of Q1, Q2, Q3 are determined by varying 

the lambda function. Solving the material Parameters: 

Table 8 shows the value of ∑ 𝑓𝑖𝑄𝑖51
𝑖=1 :- 375.98, where 

𝑓𝑖 values is mentioned in table 7. 

Table 8. Solving Material Parameters 

λ Q1 Q2 Q3 ∑ 𝑓𝑖𝑄𝑖51
𝑖=1   

1 114.27 144.84 960.76 4247.81 

2 84.59 42.73 79.30 1618.80 

3 70.20 36.92 76.47 1373.57 

4 61.30 32.97 73.92 1216.83 

5 55.11 30.07 71.61 1105.21 

6 50.48 27.82 69.50 1020.35 

7 46.85 26.01 67.57 952.93 

8 43.90 24.51 65.79 897.64 

9 41.45 23.25 64.15 851.19 

10 39.37 22.16 62.62 811.43 

11 37.57 21.21 61.19 776.87 

12 36.00 20.38 59.86 746.47 

13 34.61 19.63 58.62 719.44 

14 33.37 18.96 57.44 695.20 

15 32.26 18.36 56.34 673.29 

16 31.25 17.81 55.30 653.37 

17 30.32 17.31 54.31 635.13 

18 29.48 16.84 53.37 618.37 

19 28.70 16.42 52.48 602.88 

20 27.98 16.02 51.63 588.51 

21 27.32 15.65 50.83 575.13 

22 26.69 15.30 50.06 562.64 

23 26.11 14.98 49.32 550.93 

24 25.57 14.68 48.62 539.94 

25 25.05 14.39 47.94 529.58 

26 24.57 14.12 47.29 519.80 

27 24.12 13.87 46.67 510.55 

28 23.69 13.63 46.07 501.78 

29 23.28 13.40 45.50 493.45 

30 22.89 13.18 44.94 485.52 

31 22.52 12.97 44.41 477.97 

32 22.17 12.77 43.89 470.76 

33 21.83 12.58 43.39 463.87 

34 21.51 12.40 42.91 457.27 

35 21.20 12.23 42.44 450.95 

36 20.91 12.06 41.99 444.89 

37 20.62 11.90 41.55 439.06 

38 20.35 11.75 41.13 433.46 

39 20.09 11.60 40.72 428.07 

40 19.84 11.46 40.32 422.88 

41 19.60 11.32 39.93 417.87 

42 19.36 11.19 39.55 413.04 

43 19.14 11.06 39.19 408.37 

44 18.92 10.93 38.83 403.86 

45 18.71 10.81 38.49 399.49 

46 18.51 10.70 38.15 395.27 

47 18.31 10.59 37.82 391.17 

48 18.12 10.48 37.50 387.20 

49 17.93 10.37 37.19 383.35 

50 17.75 10.27 36.88 379.61 

51 17.58 10.17 36.58 375.98 

 

5 Discussions 

The proposed models have been applied to a 

construction project to demonstrate their practicality. 

The main aim of this study is to mitigate the time-cost 

and storage-related problems occurring in the 

construction industry. The linear programming 

solution in Table 9, indicates the crashing activities to 

reduce the project duration to 2485 days from 2598 

days, which increased the overall cost to Rs. 

45,52,96,751 from Rs. 45,50,61,628.  

Table 9. Determining the Crashed Duration and 

Crashed Cost 

Variable  Value Reduced Cost 

X1 0 69847 

X2 0 2100 

X3 0 1700 

X4 0 700 

X5 0 0 

X6 0 3609 

X7 0 700 
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X8 40 0 

X9 0 900 

X10 21 0 

X11 0 0 

X12 0 0 

X13 27 0 

X14 0 1100 

X15 25 0 

X16 0 0 

 

The objective found at the 40th iteration and its value 

is given by,  

Minimum value of Z = Rs. 235123.7 

Table 10. Comparing the Obtained result with the 

Standard value 

Parameters Permissible range 

Obtained 

result 

Cost 

Escalation 1.0% - 1.3% 1.0005% 

Crash 

Duration 

Between 2511 

and 2285 days 2485 days 

Table 10 shows that to crash the total construction 

time for 113 days, Rs 235123.7 crash cost is needed. 

Thus, an additional 235123.7 Rs is required to crash 

the total duration of the construction. From Table 9, it 

can be inferred that Activity 8,10, 13, and 15 have 

been hit to 40, 21, 27, and 25 days, respectively. For 

time-related problems, the CPM method is used to 

identify the critical path. The model indicates that 

about a 4.36% decrease in time can be achieved by 

increasing cost by 1.0005%, which is satisfactory, as 

shown in Table 10. 

The Single objective EOQ model with limited 

floor space is solved for the floor space constraints 

using the lagrangian function. The Economic order 

quantity value was found at the 51st iteration; its values 

are given in Table 11. 

 

 

 

Table 11. Determining the value of material 

parameters 

Items Optimum Value 

Q1 18 

Q2 10 

Q3 36 

The available floor space to accommodate the 

materials in the construction site is 376 sq. m. The 

∑ 𝑓𝑖𝑄𝑖 51
𝑖=1  value is 375.989 sq. m. Hence, the floor 

space constraints lie within the range. The optimum 

order quantity of steel, Granite, and Solid concrete 

blocks is 18, 10 and, 36 respectively, which can be 

accommodated in the area of 376 sq. m.  

6 Conclusion 

The linear programming model offers the best 

solution to time and cost constraints concerns. After 

optimization, it was discovered that the whole crash 

lasted 113 days. Therefore, the extra expense incurred 

due to the time reduction is Rs. 235123.70. According 

to the model, it is possible to obtain a sound time 

reduction of around 4.36% by raising the cost by 

1.0005%. The model accurately analyses while 

maintaining the correctness of the outcomes. The 

linear programming methodology effectively 

ascertains a reduction in the length of every task. By 

using software techniques, the strategy may readily 

address complicated crashing situations and is very 

versatile. The approach works well for large-scale 

building projects with plenty of moving parts. It is 

challenging to cycle through many activities manually 

using the trial-and-error method. Therefore, using the 

linear programming method, the construction manager 

may quickly estimate the crash cost required to crash 

the complete project for a given set duration. The 

project manager can efficiently organize all activities 

thanks to the model's ease of use. It is limited to 

solving linear constraints and single-objective 

problems. Therefore, several techniques, such as fuzzy 

multi-objective linear programming, mixed integer 

linear programming, and particle swarm optimization, 

can also be utilized to handle multi-objective 

optimization problems.  

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

465



Using the economic order quantity is an efficient 

approach to figuring out inventory control. The ideal 

order quantities for steel, Granite, and solid concrete 

blocks are 18, 10, and 36 lots respectively, and they 

may all fit within a 376-square-meter space. To 

maintain a good flow of production and prevent 

overinvestment in stocks, the model can keep an eye 

on the acquisition and storage of materials in the 

inventory. Any real-time project can directly benefit 

from the application of this technology. Regarding the 

building business, the model helps determine the order 

quantity at various process phases based on space 

constraints and demand. The model is easy to use and 

effective. Different programming techniques, 

including geometric, nonlinear, and Newton-

Geometric programming, can be applied to determine 

the solution. Therefore, by employing this technique, 

the construction industry's inventory management 

quality can be raised. By introducing different 

uncertainties, additional research on the time-cost 

programming model, nonlinear discrete optimization 

of project schedules, and multi-project scheduling 

with resource constraints can be conducted. In the 

economic order quantity model, modified geometric 

programming in a neutrosophic environment can be 

used to accomplish multiple product optimization. 
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