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Abstract— Thermal Point Clouds (TPCs) can provide valu-
able information during the inspection and assessment of the
performance of buildings and for energy auditing; however, it
faces two issues regarding data: scanning time and redundancy
optimization. The use of continuous and discrete scanning paths
can decrease collection times, and the automation of the process
can optimize data redundancy and accuracy. However, the cur-
rent state of the art lacks systems that perform autonomously
over a continuous path. This study presents a platform for the
continuous and automated generation of TPCs that improves
real-time scan quality evaluations and path optimization.

I. INTRODUCTION

The 2022 Energy Efficiency report by the International
Energy Agency (IEA) [1] indicates that differences between
efficient and inefficient thermal planning for residential struc-
tures can triple heating costs. Therefore, thermal analysis of
structures is an increasingly important field in construction
to promote sustainability. Advancements in computer vision
have allowed for more efficient methods in creating Thermal
Building Information Models (TBIM) to improve energy
auditing of buildings [2]. TBIM generation has also improved
through the automation of data collection. Common prac-
tices involve thermal mapping via infrared cameras along
with LiDAR. This can be combined with algorithms such
as Simultaneous Localization and Mapping (SLAM) and
Structure from Motion (SfM) to create a thermal model of a
building.

However, temporal and spatial non-uniformity issues can
arise when creating TBIMs [3]. For example, temperature
readings can vary over time due to environmental changes
or to the change in the camera’s internal temperature–
necessitating calibration. Temperature readings can also vary
spatially, as seen in the discrepancies in readings from differ-
ent angles of view [4], [5]. As summarized in the Literature
Review section, the spatial and temporal non-uniformity
issues dominate TBIM generation approaches–especially in
three-dimensional models. Generally, TBIM generation mod-
els can be categorized based on data collection path and type.
The path involves a selected number of discrete points or
a continuous data stream. The collection type can either be
manual or automatic. The resulting combinations of path and
type are used to classify existing work since they all tackle
the issues of non-uniformity similarly. A survey of existing
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literature shows a need for more development in continuous
and automated models.

This study uses the Robotnik SUMMIT XL platform
to present a prototypical automated and continuous TBIM
generation system. The continuous path allows for faster
scans, reducing the impact of temporal variations in the envi-
ronment. Meanwhile, the automation of the system presents
the stage for algorithms that can minimize dark spots and
increase data redundancy in real time.

The reaming of this paper is organized as follows: Sec-
tion II discusses the state-of-the-art and currently employed
methods in TBIM generation. Section III discusses the theory
and flow diagrams for the proposed system. Section IV
documents the experimentation process and any additional
steps taken during testing. Section V summarizes the results,
and Sections VI gives concluding remarks and thoughts on
future research.

II. LITERATURE REVIEW

A. Thermal Mapping

Thermal mapping is the projection of temperature onto
spatial information. Depending on the target structure, the
mapping may be two-dimensional (2D), 2D with depth
(2.5D), or three-dimensional (3D). 2D maps typically overlay
information from a thermal camera with an RGB camera
and are most commonly used in analyzing flat surfaces and
façades. For example, [6] demonstrates the use of classifi-
cation algorithms for structural crack detection. Next, 2.5D
maps apply depth to a 2D map to distinguish the structure’s
geometry. [7] shows how thermal information can be mapped
with depth using LiDAR. Alternatively, [8] demonstrates a
low-cost solution that implements Structure from Motion
(SfM) algorithms to extrapolate a 2.5D map from stereo
cameras. 3D maps incorporate the fusion of multiple 2.5D
projections. Although LiDAR can have up to 360◦ field
of view, the same cannot be said for thermal cameras.
3D maps are thus created by stitching together multiple
2.5D scans. This stitching process warrants an increased
amount of precision. As a result, many applications rely
heavily on LiDAR SLAM. While visual SLAM provides a
better potential for pattern recognition [9], LiDAR SLAM’s
capacity for real-time 360◦ localization is more valuable in
creating TPCs.



TABLE I
SUMMARY OF PAPERS USED IN THE LITERATURE REVIEW

Ref ID First Author Date Sensors Used* Data Collection
Method Target Environment Dimension Data Collection Path

[7] Wang 2013 L, I Manual Façade Exterior 2.5D Discrete
[8] Vidas 2013 I, C Manual Building Interior 2.5D Discrete
[10] Zhu 2021 L, I Manual Façade Exterior 3D Discrete
[11] Yun 2022 L, I, C Manual Façade Exterior 3D Continuous
[12] Schischmanow 2022 L, I, C Manual Building Both 3D Continuous
[6] Van Nguyen 2018 I, C Automated Façade Exterior 2D Discrete
[13] Adán 2019 L, I, C Automated Building Interior 3D Discrete
[14] Kim 2017 L, I, C Automated Building Interior 3D Discrete
[15] Kumar 2017 I, C Automated Building Interior 2D Continuous, but Non-mapping

*(L) LiDAR, (I) infrared camera, (C) RGB camera

As seen in Table I, LiDAR is prevalent in creating 3D
TBIMs. However, thermal cameras tend to be more out of
focus and/or have lower resolution than RGB cameras. As
a result, algorithms that prioritize edge detection [10] and
object recognition [14] additionally use RGB cameras.

B. Data Collection Type and Path

Table I lists various researched implementations of TPC
creation. Keywords for searching include "thermal point
clouds", "Building Information Model (BIM)", "thermal and
point cloud data fusion", and "thermal mapping/modeling".
The term "automated" was added to specifically identify
autonomous TBIM generation techniques. The basis for an
autonomous system is the ability to perform evaluations and
path modifications in real time. For example, [16] presents a
system that involves an automated robot that can perform 3D
mapping continuously. However, the data processing occurs
offline (e.g., after all the data collection) and therefore lacks
the capability for recursive self-evaluation. As a result, this
paper was not included in the review.

TPCs can be generated in manual or automated manners.
Manual methods collect data in a pre-established manner,
whereas automated procedures can update the path depend-
ing on spontaneous parameters such as scan quality or
completeness. In [11], the sensors are attached to a manually
driven car, whereas in [12], the sensors are handheld. Since
the TPC is only generated after all the data collection, this
implies that manual systems are unable to effectively model
regions outside the sensors’ field of vision. Furthermore, in
the case of a thermal camera attached atop a car, the readings
for points on the roadside will always be at an angle with
respect to the normal plane. This creates further errors in the
readings, as discussed in [4] and [5]. In contrast, automated
systems such as in [13] can perform real-time evaluations of
the scan, recursively determining which areas require more
data collection. This optimization of data redundancy allows
for more accurate readings and fewer dead zones. However,
their system performs stop-and-go data collection instead of
continuous scanning, which results in less efficiency.

The data collection path is also important when tackling
the scanning time. In [11] and [12], the continuous path
allows for faster scan times compared to discrete methods.
However, the manual data collection leads to issues previ-
ously discussed. In [15], the system drives autonomously

and continuously but does not perform thermal mapping.
In the current literature, there is a lack of systems that
autonomously create thermal maps in a continuous manner.

III. METHODOLOGY

This section presents a system that implements an au-
tonomous and continuous method to generate TPCs. The
SUMMIT-XL Robot is used as a platform. A FLIR A65 In-
frared Camera (90◦x 69◦ FOV and a resolution of 640x512)
and an Ouster OS1 LiDAR (360◦x 45◦ FOV and a resolution
of 60x1024) are mounted on the robot to collect thermal
and 3D information (Fig. 1 and Fig. 2). Furthermore, the
thermal camera is mounted on a FLIR Pan-Tilt unit (PTU-
E46-17) for two extra controllable degrees of freedom (range
of motion of ±159◦ in pan and -47◦ to +31◦ in tilt, and a
resolution of 0.129◦). This is a novel implementation in the
field of TBIMs, as most systems just relate the camera and
the robot body via a fixed frame. The system has been tested
in a cluttered lab space of 80 m2, an environment similar to
what the system might encounter in a real implementation.

Fig. 1. General view of hardware
setup and robotic platform

Fig. 2. Close up of LiDAR,
thermal camera and PTU

A. Calibration between thermal camera and LiDAR

To properly connect the 2D thermal information (Xt ,Yt )
with the 3D geometric information (Xp,Yp,Zp), an extrinsic
calibration needs to be performed between the FLIR thermal
camera and the Ouster LiDAR. To obtain this geometric
correspondence, the method proposed by Adan et al. [13]
was used. A set of small landmarks consisting of ice cubes
with a reflective surface (Fig. 3) was used to obtain common
points easily visible in the thermal image (due to the low
temperature) (Fig. 4) and the reflectance image from the
LiDAR (due to the highly reflective surface) (Fig. 5).



Fig. 3. Ice cubes with reflective
surface used as calibration land-
marks

Fig. 4. Thermal picture with
locations (numbers in red) of land-
marks

Fig. 5. Reflectance picture with locations (numbers in red) of landmarks

The computed transformation matrix Me between individ-
ual points is presented in (1).λX f
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λ
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The matrix Me and its ri j components can be calculated
by applying the Moore-Penrose pseudoinverse, knowing the
coordinates of each one of the landmarks both in the thermal
and the reflectance images. After performing the calibration
and computing the transformation matrix, the Mean Squared
Error (MSE) of the distance between the actual position of
the landmarks’ centroids and their projected position was
3.33 pixels. Given that the resolution of the thermal camera
is 640x512 pixels, the error is negligible for the short and
medium distances of the space investigated in this study.

Additionally, an extra transformation needs to be per-
formed considering the angles from the PTU (Mp) and
the robot’s real-time position calculated by the 3D SLAM
(Mr). The final transformation matrix Mt is calculated by
combining the three transformations Mt = Me ·Mp ·Mr.

B. TPC generation

The process used for creating the thermal point cloud is
outlined by the flowchart shown in Fig. 6.

Fig. 6. Main steps and processes of the proposed Thermal Mapping.
Acronyms used: Occupancy Grid (OG), Pan-Tilt Unit (PTU), Inertial
Measurement Unit (IMU), and Transformations (TF)

Upon starting, the algorithm initializes the scanning path,
sensors, and the robot description–which publishes the trans-
formation frames (TF) relating the robot, sensors, and PTU.
The algorithm will proceed until the end user sends a
termination request. With each iteration of the loop, the
algorithm evaluates the TPC and modifies the robot and
PTU path. After receiving the sensor input and updating the
robot description, the algorithm generates two datasets: a 3D
TPC and a 2D occupancy grid (OG) used for navigation.
The 3D TPC is created by applying the R3LIVE algorithm
[17] with the point cloud, thermal image, IMU information,
and all the transformations involved in stitching the thermal
information to the point cloud as the robot moves. The
2D OG is created by first converting the point cloud to a
2D laser scan ROS topic and then applying the gmapping
algorithm [18]. These maps are updated continuously with
each loop cycle, resulting in an automated and continuous
TPC generation algorithm. All the source code is available
on Github [19].

IV. RESULTS AND DISCUSSION

This section discusses the implementation of the thermal
mapping algorithm discussed in Section III-B (TPC genera-
tion). Different views of the space where the experiment was
conducted are shown in Fig. 7 and Fig. 8.

Fig. 7. General view (A) where
the experiment was conducted

Fig. 8. General view (B) where
the experiment was conducted

The process (Fig. 6) includes a sub-task that evaluates
the scan quality and completeness (e.g., dark zones) and
updates the robot and PTU path. However, this is still a
work in progress; therefore, no iterative modifications to
the path are done in the current version. Using the OG
created by the SLAM algorithm [18], a costmap is used to
autonomously path find towards the preset destination (Fig.
9). Simultaneously, the R3LIVE algorithm [17] is used to
continuously generate a TPC (Fig. 10).

Fig. 9. Navigation Costmap Fig. 10. Real-time Generated TPC

It took the robot to autonomously reconstruct the TPC
in this study about 1’30”. If the same process was done
by a static approach (stop-and-go scanning), at least 3
different scan locations would be needed to deal with all
the occlusions for the same space, with a scanning time of
about 2’45” per location. A handheld approach would be



close in time to the one of the robot, but other factors, such
as stability, would need to be addressed.

The accuracy of the thermal data was not considered be-
cause the changes in temperature in the TPC were evaluated
at a qualitative level. Some conditions observed, such as
thermal bridges or lack of insulation, can be clearly identified
and do not need precise temperature information.

V. CONCLUSIONS, LIMITATIONS, AND OUTLOOK

The generation of TPCs, necessary for creating 3D TBIMs,
faces the issue of temporal and spatial problems. Slow
scan times can lead to deviations caused by environmental
variations, such as the time of day. Thermal imaging also
has errors when measured at an angle to the scan surface’s
normal. Continuous scan paths can resolve temporal issues,
and automated systems can perform real-time scan analysis
to assess data quality. However, the current literature lacks
systems that are both continuous and automated. This paper
presents a prototype of such a system, which can directly be
augmented with improvements based on the use case.

The proposed implementation presents a potential
archetype for the autonomous and continuous generation
of as-is 3D thermal mapping (i.e., generation of TPCs)
in construction environments. Further improvements can be
added to increase efficiency. For example, the OG and the
thermal map can be reconciled through Kalman filters to
increase navigational and data accuracy. Continued develop-
ments to the PTU and scan completeness algorithms can also
increase efficiency. Further real experimentation of all the
steps involved in the methodology will be tackled in future
work, as well as using this approach to develop digital twins
to assess the thermal performance of buildings.
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