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Abstract 

Predicting the outcomes of safety incidents on 

construction projects is of a great value to various 

project stakeholders. Accurate estimates allow 

construction managers to take appropriate 

preventive measures based on the severity of the 

outcomes. Such estimates can be predicted using 

machine learning algorithms, although the quality of 

these estimates is dictated by factors including the 

types of algorithms employed and the dataset used to 

train them. Moreover, the metrics used to evaluate 

the algorithms can be misleading, indicating 

satisfactory performance when this may not be the 

case. In light of these considerations, this study 

trains a set of machine learning algorithms to predict 

the severity of safety incidents, highlighting the 

importance of confirming the credibility of 

performance evaluation results, and compares the 

performance of the algorithms. The results show that 

the support vector machine and k-nearest neighbors 

prediction models exhibit the best overall 

performance, with support vector machine achieving 

a mean absolute percentage error value of 18.78% 

and k-nearest neighbors an accuracy of 64.84%. On 

the other hand, the results also reveal that the 

models performed poorly in predicting some classes 

as a result of a high degree of imbalance identified in 

the dataset used for training and testing the models. 

The study’s main contribution is to highlight the 

possibility of making biased performance 

evaluations of machine learning algorithms, 

depending on the performance measures used for the 

evaluation.  
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1 Introduction 

Given their hazardous nature, construction projects 

involve numerous high-risk activities during which 

safety incidents of high frequency and impact may 

occur. In Canada, more than 450 deaths and 63,000 

injuries were recorded over a period spanning the period 

2006 to 2017 [1]. High-risk activities can result in 

injuries, fatalities, schedule delays, and financial losses. 

In fact, healthcare expenditures in response to 

construction safety incidents in Canada amount to about 

19.8 billion dollars each year [1]. The growing costs of 

incidents and the increased related pressure imposed by 

owners have increased contractors’ awareness of the 

significance of safety risks [2]. Accordingly, there have 

been major efforts made and strict regulations 

introduced to control and minimize the risks associated 

with safety incidents.  

Knowing the possible outcomes of safety incidents 

could help in mitigating the risk of their occurrence by 

assisting decision makers in taking the necessary 

preventive measures. With the large volumes of data 

being collected thanks to modern technology, artificial 

intelligence algorithms can be used for predicting the 

outcomes of incidents. In fact, multiple studies have 

developed models to predict and classify different 

aspects of construction incidents [3-12]. However, 

different algorithms can vary in performance depending 

on the dataset used for the training, and, hence, the 

algorithm to be used must be carefully selected. 

Moreover, evaluating the performance of the algorithms 

is a critical step that must be handled with special care. 

The metrics used to evaluate the algorithms could lead 

to an errant indication of satisfactory performance. The 

risk of this occurring is especially high when dealing 

with poor quality, insufficient, or complex data. This 

issue is manifest in a recent study by Ayhan & 

Tokdemir [3] aimed at predicting the severity of safety 

incidents on construction projects. The dataset used in 

their study is characterized by a high level of 
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heterogeneity and could thus be considered highly 

complex. The authors attempted to address the issue of 

heterogeneity by clustering the data prior to training the 

algorithms. Nevertheless, their results still showed high 

values of error, with the mean absolute percentage error 

reaching 62.3% in the case of the algorithm that 

exhibited the best performance. Despite this high error 

value, their study relied on an overall error of 18%—

which was biased due to the high degree of imbalance 

found in the dataset—to judge the performance of their 

algorithms.  

In this context, the present study aims to train a set 

of machine learning algorithms using the same dataset 

used by Ayhan & Tokdemir [3] in order to predict the 

severity of safety incidents on construction projects 

while targeting the following objectives: (1) highlight 

the importance of properly evaluating the performance 

of algorithms; (2) compare the performance of various 

algorithms when trained using the same dataset; and (3) 

find the best performing algorithm for predicting the 

severity of safety incidents. 

2 Relevant Applications 

Many studies have endeavoured to train machine 

learning algorithms for applications related to safety 

incidents on construction projects. These algorithms 

have been deployed for a wide variety of applications 

related to enforcing safety measures, predicting safety 

risks, identifying causal factors, and detecting hazards, 

to name a few. A summary of some of these 

applications is presented in Table 1.  

Table 1. Literature summary 

Study Goal Algorithms 

[3] Predict the severity level of

safety incidents 

Artificial 

Neural 

Network 

Case-Based 

Reasoning 

[4] Predict safety climate (i.e.,

employees’ perceptions of

existing safety practices) on

construction projects 

Artificial 

Neural 

Network 

[5] Assess construction workers’

risk perceptions in terms of

the probability and severity of

the consequences of safety 

hazards 

Gaussian 

Support 

Vector 

Machine 

K-Nearest

Neighbor

Decision Tree 

Bagging Tree 

[6,7] Detect safety helmet wearing 

on construction sites 

Deep learning 

Convolutional 

Neural 

Network 

[8] Analyse site fall accidents in

order to identify related 

causal factors, classify the 

factors, and identify the 

correlation between the type 

of accident and the causal 

factor(s) 

Text mining 

[9] Predict safety risk factors on

construction projects 

Back 

Propagation 

Neural 

Network 

[10] Detect safety hazard issues

based on the project’s 

schedule and the sounds 

generated by work activities 

and equipment operating on 

construction sites 

K-Nearest

Neighbor

[11] Detect fires on construction

sites in real-time 

Convolutional 

Neural 

Network 

[12] Identify construction safety

hazards 

Case-Based 

Reasoning 

3 A Brief Overview of the Previous Study 

The study conducted by Ayhan & Tokdemir [3] 

aimed at predicting the severity of safety incidents that 

occur on construction projects. The prediction outcomes 

subsume six levels of severity including, from low to 

high: (1) Level 1: At risk behavior/near miss; (2) Level 

2: Accident with material damage; (3) Level 3: Accident 

with first aid; (4) Level 4: Partial failure/accident with 

medical intervention; (5) Level 5: Lost workday cases; 

and (6) Level 6: Fatalities. The dataset used by Ayhan 

& Tokdemir [3] covers 5,224 cases of actual incidents 

that occurred on megaprojects in the Euro-Asia region. 

The data provides information on the severity level of 

each incident and a corresponding list of 60 attributes 

classified into nine categories, subsuming the time of 

the day, age, experience, occupation, activities, 

hazardous cases, risky behaviours, human factors, and 

workplace factors. The time of the day is binned into 

eight 3-hour intervals starting from 6:00 a.m., age is 

binned into four categories (18–25 years, 25–35 years, 

35–45 years, and 45–65 years), experience is binned 

into six categories (1 month, 1–3 months, 3–6 months, 

6–12 months, 12–24 months, and 24 months), and 

occupation could be any of seven specified positions 

including administrative affairs, construction equipment 

operator, repairman, rough work crew, finishing work 

crew, mechanical assembly crew, engineer or, otherwise, 
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labelled as others. Meanwhile, the attributes belonging 

to the remaining categories are modelled as binary 

variables that take the value of “1” if the factor is found 

in the incident case and “0” if not. 

To address the issue of the high level of 

heterogeneity found in the collected dataset, the authors 

clustered the data using Latent Class Clustering 

Analysis (LCCA). The authors used Artificial Neural 

Networks (ANN) and Case-Based Reasoning (CBR) to 

predict the severity of the outcome of an incident. 

4 Methodology 

RapidMiner software was employed in this study to 

train and test the machine learning models. Figure 1 

depicts a sample of the machine learning process built 

using RapidMiner software, and the steps followed to 

design the process are described in the following 

subsections.  

Figure 1. Machine learning process 

4.1 Data Pre-processing & Exploration 

4.1.1 Type of Prediction Problem 

The type of class to be predicted (i.e., incident 

severity) is nominal, as it only assumes the value of one 

of the six severity levels in the provided dataset. 

However, the numbers corresponding to these levels 

(i.e., 1 to 6) are ordinal, since the severity of an incident 

is higher for higher levels. In reality, data on safety 

incidents could be considered continuous since the data 

could fall between the specified categories. For instance, 

an incident that results in a minor injury that does not 

necessitate first aid (e.g., a scratch) is less severe than 

Level 2 incidents but more severe than incidents that 

only involve material damage. As such, a decimal 

number falling between any two levels is helpful in 

terms of accurately representing reality. Hence, one set 

of machine learning algorithms were trained to estimate 

a numerical value of the severity level, and another set 

was trained to classify the outcome of the incidents. 

However, it should be noted that, in the interest of 

simplicity, the difference between the severity levels is 

assumed to be linear. In the study by Ayhan & 

Tokdemir [3], the class was treated as a numerical value 

where the severity level was estimated as a decimal 

number. 

4.1.2 Data Cleansing 

The dataset considered in this study was tidy and did 

not require significant cleansing. The data was 

evaluated to identify any missing attribute values. Only 

the experience attribute had missing values, and in only 

four of the 5,224 cases. Given the small proportion of 

missing values, these instances were simply excluded 

from the dataset. No additional errors or duplicates were 

identified.  

4.1.3 Data Preparation 

Typically, data is aggregated based on specific 

attributes in order to absorb variability and increase 

accuracy. As the age, experience, and time of day 

attributes have been already divided into bins, no further 

processing was deemed necessary at this stage.  

It is integral to detect outliers in the data and remove 

them in order to minimize noise and, consequently, 

improve the accuracy of the prediction models. The 

process of removing outliers was undertaken in an 

iterative manner to avoid any detrimental effect on the 

performance of the prediction models as a result of 

removing core points. Density-based outlier detection 

was undertaken using Euclidean distances and ten 

neighbours. In this method, it should be noted, the 

neighbourhood of each datapoint is checked for the 

existence of ten neighbour datapoints. Accordingly, a 

point is considered an outlier if its neighbourhood does 

not contain enough datapoints. The number of outliers 

to be identified was initially set to ten points only. Then, 

this number was iteratively modified to maximize the 

accuracy of the prediction models. Two hundred outliers 

were ultimately identified and removed from the dataset. 

It is critical to note that the data was highly 

imbalanced, meaning that some classes had a 

significantly higher frequency than others. As shown in 
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Figure 2, Level 3 severity had 3,070 observations, as 

compared to only four observations in the case of Level 

6 severity. Such an imbalance in the dataset could result 

in building inaccurate models that exhibit satisfactory 

performance even when tested on a portion of the data 

that was not part of the training data. This is due to the 

fact that, if the model predicts that all the instances in 

the testing dataset belong to Level 3 class, its accuracy 

would still be high since the majority of the instances 

are of Level 3. The problem of imbalance is typically 

addressed by under-sampling or over-sampling the 

dataset [13]. Oversampling refers to the practice of 

duplicating instances from the minority classes to 

increase their cardinality, while under-sampling consists 

of taking subsets of the majority classes in order to 

reduce their frequency relative to that of the minority 

classes [13]. These techniques translate into replicating 

instances in Level 1, Level 2, Level 5, and Level 6 

classes or taking subsets of Level 3 and Level 4 classes. 

Both of these strategies were tested when building the 

models.  

 
Figure 2. Class frequency 

4.2 Machine Learning Models  

4.2.1 Model Selection and Description 

A trial-and-error approach was adopted to select the 

machine learning models exhibiting the best 

performance in predicting the severity level of incidents. 

The models selected for the numerical estimation of the 

severity level were Support Vector Machine (SVM), 

Linear Regression (LR), and Gradient Boosted Trees 

(GBT). For predicting the severity level as a nominal 

class, K-Nearest Neighbour (KNN), GBT, Random 

Forest (RF), and Generalized Linear Model (GLM) 

were selected.  

A brief description of the selected models is 

summarized in Table 2 below.  

Table 2. Description of models [14] 

Model Description 

SVM 

SVM is a non-probabilistic binary linear 

classifier that takes input data and forecasts 

which of two possible classes contains the 

input.  

LR 

LR models the relationship between a scalar 

variable and one or more explanatory variables 

by fitting a linear equation to the labelled 

training data. 

GBT 

GBT is an ensemble of classification tree 

models or regression models. It predicts 

classes through estimations that are gradually 

improved.  

KNN 

KNN compares a new example with k 

examples from the training dataset that are the 

nearest neighbours to the new example.  

RF 

RF is an ensemble of random trees. When 

given new examples, each random tree predicts 

the label of the input by following the 

corresponding branches. Class predictions are 

based on the majority of the trees’ predictions, 

while estimations are the average of the trees’ 

predictions.  

GLM 

GLM is a generalization of the traditional 

regression model that allows for the use of 

variables that are not normally distributed. 

4.2.2 Models’ Development and Validation 

It is important to set aside a portion of the data to be 

used for testing purposes once the models have been 

trained. This helps mitigate the risk of overfitting, which 

is more likely to occur if the machine learning model is 

trained and tested using the same dataset. In specific, 

overfitting occurs when the model captures the noise in 

the training dataset and, consequently, fails to 

accurately predict new data [15]. Hence, the models 

were trained using 80% of the dataset, and their 

performance was evaluated using the performance 

measures explained in Section 4.2.3. The parameters of 

each model were continuously tuned to optimize their 

performance. Finally, the models were tested and 

validated using the remaining 20% of the dataset.  

4.2.3 Models’ Performance Evaluation 

Ten-fold cross validation was used to train and 

evaluate the selected models. For the numerical 

estimation models, the mean absolute percentage error 

(MAPE) (1) and the root mean squared error (RMSE) (2) 

were used to evaluate performance.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|

𝑛

𝑡=1

× 100 (1) 
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𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑡 − 𝐴𝑡)2𝑛

𝑡=1

𝑛
 (2) 

where 𝐴𝑡  is the actual instance, 𝐹𝑡  is the predicted 

instance, and n is the total number of instances. As for 

the class prediction models, classification error (3) and 

accuracy (4) were used to evaluate their performance. 

𝐸 =
𝑓

𝑛
× 100 (3) 

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (4) 

where f is the number of incorrectly classified 

classes, TP is the number of true positives, TN is the 

number of true negatives, FP is the number of false 

positives, and FN is the number of false negatives.  

Recall (5) and precision (6) metrics were also 

computed in order to provide more context for 

understanding the accuracy evaluation metric. 

Computing recall values, it should be noted, addresses 

the following question: among the safety incidents that 

will actually occur, how many are we able to predict 

using our models? The recall measure is significant for 

the purpose of this study, as failing to anticipate 

incidents could result in financial and/or human losses. 

As for the precision metric, it answers the following 

question: among the incidents that are predicted to occur, 

how many will actually occur? When incidents are 

expected to occur, mitigation measures are undertaken 

accordingly to minimize the risk of occurrence. This 

translates into additional project costs associated with 

the safety measures. Therefore, the recall metric is 

deemed more critical than the precision metric in the 

context of this study, as it could be related to human 

losses.  

% 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (5) 

% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (6) 

5 Results and Discussion 

5.1 Imbalanced Data Problem 

The results of both techniques employed for 

addressing the problem of data imbalance (i.e., under-

sampling and over-sampling) were found to be 

unsatisfactory. This was mainly due to the significant 

gap between the frequencies of different classes. Under-

sampling resulted in poor performance of the models, 

largely attributable to the fact that the size of the dataset 

had to be significantly reduced in order to achieve 

balance, and thus it was not of a sufficient size to both 

train and test the models. On the contrary, over-

sampling served to increase considerably the accuracy 

of the models. However, this accuracy is misleading, as 

it was largely the result of the testing data having 

contained instances of data points that were used in both 

testing and training of the models as a result of making 

duplicates. Over-sampling in the case of this dataset 

introduced the problem of overfitting. In light of this, 

the dataset was left as is, and the models were evaluated 

against each other to assess their overall performance 

and select the most optimal ones. 

5.2 Performance Evaluation Results 

The values of evaluation metrics computed for the 

different models are summarized in Table 3.  

Table 3. Evaluation results 

Numerical Estimation 

Model MAPE RMSE 

SVM 18.29% +/− 2.68% 0.850 +/− 0.051 

LR 20.83% +/− 2.31% 0.738 +/− 0.044 

GBT 20.01% +/− 1.04% 0.732 +/− 0.029 

 

Class Prediction 

Model Classification Error Accuracy 

GBT 37.16% +/− 2.26% 62.84% +/− 2.26% 

KNN 37.48 % +/− 1.65% 62.52% +/− 1.65% 

RF 39.35% +/− 0.43% 60.65% +/− 0.43% 

GLM 37.61% +/− 1.58% 62.39% +/− 1.58% 

For the numerical estimation models, SVM was 

found to have the lowest MAPE and GBT the lowest 

RMSE, while LR exhibited poorer performance. As for 

the class prediction models, the classification error and 

the accuracy values for GBT, KNN, and GLM were 

found to be relatively close, while RF had higher error 

and lower accuracy. Moreover, the value of recall and 

precision metrics were found to be acceptable for all the 

models, the one exception being the RF model, in which 

the value of class’ recall was 99.75% for Level 3 and 

0.28% for Level 4, as the model predicted that most of 

the instances belong to class Level 3. This means that 

the RF model failed to predict Level 4 incidents, which 

include those necessitating medical intervention. Such 

values of the recall metric confirm the criticality of 

verifying the credibility of some performance evaluation 

measures (i.e., the accuracy metric in this case) to avoid 

misleading results. If the accuracy value was solely used 

to judge the performance of the algorithms, the RF 

model’s performance would not have been considered 

significantly inferior to that of others.  

Therefore, the LR and RF models were excluded at 

this stage, and the final selection among the remaining 
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models was based on the validation results as explained 

in the following section.  

5.3 Validation Results 

In conducting the validation, the trained models did 

not yield promising results, as the error reached 37.15%. 

However, similar results were recorded for all the 

models, mainly attributable to the low quality of the 

training dataset.  

The validation results were used to select the best-

performing models. As shown in Table 4, for the class 

prediction models, KNN was found to perform better 

than GBT and GLM, with a classification error of 35.16% 

and an accuracy of 64.84%. As for the numerical 

estimation models, the notion of an optimal model is 

contingent on the choice of the performance evaluation 

measure. In other words, SVM is the better option if 

MAPE is used for identifying the best model, while 

GBT is considered a better choice if RMSE is used. For 

the purpose of comparison with the previous study, 

MAPE was chosen as the decision-making criterion, and 

SVM was correspondingly selected.  

Table 4. Validation results 

Model MAPE RMSE 

SVM 18.78% +/- 37.44% 0.844 +/− 0.000 

GBT 20.28% +/- 35.89%  0.710 +/− 0.000 

Model Classification Error Accuracy 

GBT 37.15% 62.85%  

KNN 35.16% 64.84% 

GLM 36.35% 63.65% 

5.4 Additional Assessment of the Models 

A satisfactory value of MAPE computed for the 

whole dataset does not guarantee good performance of 

the models. This is especially critical given the high 

degree of imbalance found in the dataset. Hence, MAPE 

was also computed for each class separately to ensure 

that the large number of Level 3 instances is not 

skewing the results. This was done for both SVM and 

KNN; the results are plotted in Figure 3.  

 
Figure 3. Validation results 

The results show comparable performance for the 

two models. The error, however, was found to be 

significant for Level 1 predictions (170.59% for SVM 

and 185.42% for KNN), while that of the Level 3 

predictions was found to be very low (0.04% for SVM 

and 2.48% for KNN). Meanwhile, the error was found 

to be reasonably acceptable for the other classes. It 

should be noted that the testing dataset did not include 

any Level 6 incidents resulting in null values for the 

Level 6 class prediction performance measures.  

As anticipated, the reasonably acceptable 

performance of the models is a result of the 

misleadingly low error value obtained in predicting the 

Level 3 class instances. Given the high degree of 

imbalance in the dataset, it stands to reason that 

predicting that any new instance belongs to Level 3 

class would give relatively acceptable results as 

compared to those obtained using the selected 

algorithms. In fact, the performance of the selected 

models was only slightly better than that of the Zero 

Rule classifier, as shown in Figure 4. Hence, the results 

obtained were deemed to be unsatisfactory. In other 

words, although the overall error of these models was 

found to be acceptable, this was due to imbalance 

skewing the Level 3 class predictions towards zero. As 

such, the developed models are not generally 

recommended for use, as they are not capable of reliably 

generalizing new datasets, given the low quality of the 

dataset used for training.  
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Figure 4. Zero Rule classifier performance 

results 

6 Comparison 

The error pattern found in the data predicted using 

SVM and KNN models matched that corresponding to 

the ANN and CBR models developed by Ayhan & 

Tokdemir [3], as shown in Table 5. The same issue 

identified in the SVM and KNN predictions was 

observed in the results generated by their models: the 

MAPE values were very high in the case of the Level 1 

prediction, very low for Level 3 prediction, and 

relatively acceptable for the other classes. However, the 

variation between the MAPE values for different classes 

was found to be smaller in the case of CBR and ANN, 

and the highest error in the case of CBR was 

significantly lower (62.3%). This is presumably a result 

of the clustering analysis performed by Ayhan & 

Tokdemir [3].  

Table 5. Summary of MAPE values 

 Previous Study 

 ANN CBR 

Lowest MAPE (found for 

Level 3 predictions) 

7.95%  8.66% 

Highest MAPE (found for 

Level 1 predictions) 

192.3% 62.3% 

 

 Current Study 

 SVM KNN 

Lowest MAPE (found for 

Level 3 predictions) 

0.04% 2.48% 

Highest MAPE (found for 

Level 1 predictions) 

170.59% 185.42% 

Based on the results summarized in Table 5, it can 

be concluded that the clustering analysis performed by 

Ayhan & Tokdemir [3] did not play a significant role in 

improving the quality of the dataset in the case of ANN 

although their results were more favorable in the case of 

CBR. Despite the significant effort on the part of Ayhan 

& Tokdemir [3] to improve the dataset, the error 

patterns (i.e., low error for Level 3 predictions and high 

error for Level 1 predictions) were close to those 

obtained in the present study in which minor data 

preparation was performed prior to the models’ 

development. 

7 Conclusions 

The SVM and KNN prediction models exhibited the 

highest performance among the various machine 

learning algorithms for predicting the severity level of 

safety incidents on construction projects. Nevertheless, 

although both algorithms yielded acceptable overall 

values of performance evaluation metrics (an overall 

MAPE of 18.78% for SVM and an accuracy of 64.84% 

for KNN), these values were not representative of the 

actual performance of the models. This was confirmed 

by computing the MAPE separately for each class, 

resulting in a value of 185.42% for KNN prediction of 

Level 1 class as compared to 2.48% for KNN prediction 

of Level 3 class. The high variation in MAPE values 

between the different classes is attributable to the high 

degree of imbalance found in the dataset (i.e., 

approximately 59% of its instances belong to the Level 

3 class). 

The results of this study reinforce the following 

points: 

• The perception of the performance of machine 

learning algorithms could be highly biased 

depending on the metrics used for performance 

evaluation. For instance, if the final selection in 

this study had been solely based on the overall 

errors computed for validation purposes, the 

performance of the algorithms would have been 

considered relatively acceptable, whereas the 

actual results were unfavourable. A combination 

of different performance measures and validation 

techniques should be utilized to ensure that an 

unbiased decision is made.  

• The quality of the training dataset could diminish 

the value of deploying some advanced machine 

learning algorithms and make the use of simpler 

classifiers, such as the Zero Rule classifier, more 

desirable.  

• When the quality of the dataset is questionable, it 

is critical to perform multiple levels of 

performance evaluation to confirm the credibility 

of the evaluation results. 
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