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Abstract 

This study merges artificial intelligence (AI) image 

recognition technology with Building Information 

Modeling (BIM), to develop a prototype system for 

the automation and visualization of construction site 

progress control. Our focus is the strategic 

deployment of multiple construction site surveillance 

cameras using a BIM model to encompass the entirety 

of the construction site. Following the capture of 

camera images, the application of object detection 

techniques within AI image recognition locates all 

actively constructed objects in the images, 

subsequently identifying the construction phases to 

which these objects belong. By integrating multiple 

camera perspectives from the site into a BIM model, 

the results of AI detection are automatically inputted 

into the corresponding components of the model.  

Finally, real-time on-site progress information 

obtained from the BIM model is compared with the 

progress schedule, and the comparative results are 

visually presented on the BIM model components in 

distinct colors. Through this visual approach, 

managerial personnel can intuitively and instantly 

control the construction progress. 
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1 Introduction 

In the project management of the traditional 

construction industry, monitoring the progress of the 

project has always been an important task [1]. In addition 

to having a profound awareness of the construction 

environment, the on-site engineer must also understand 

drawings. Progress data must be collected on-site, and 

real-time progress information must be presented in the 

form of text and data for project managers to refer to [2]. 

For less experienced site engineers, there may be 

cognitive standards for different construction phases. 

Moreover, it is not easy for people who are not familiar 

with engineering to convert two-dimensional drawings 

into three-dimensional scenes, which will cause 

differences in information transmission. 

In order to fully support the life cycle of construction 

projects and interpret engineering information models 

through computer programs, BIM came into being. The 

application of BIM covers all stages of the building life 

cycle, including planning, design, procurement, 

construction, operation and maintenance, etc. [3]. In the 

construction stage, BIM is commonly integrated with 

project timelines to create a 4D model for construction 

simulation. Although the dynamic model exists, on-site 

engineers still need to update the schedule data of the 

model components by comparing animations with actual 

on-site construction conditions to achieve progress 

control. 

Using a huge management manpower to collect and 

organize complex data, this traditional management 

method no longer seems efficient enough. Many studies 

have surveyed how to improve complex data processing 

procedures that rely on manpower [4]. In order to allow 

managers to perform progress management tasks more 

quickly and ensure that progress evaluation standards are 

unified, thereby making the overall management process 

smoother. 

As technology advances, more research in artificial 

intelligence (AI) has made significant strides in recent 
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years. Machine learning is a method of learning from past 

data and experiences to identify operational rules. Deep 

learning, a subset of machine learning that applies  multi-

layered neural networks to simulate human neuron 

functions, has achieved notable breakthroughs in the 

fields of images, videos, and speech [5-6]. 

The rapid development of AI image recognition 

technology has led to its expanding applications in the 

field of engineering, particularly in construction 

industries for the management of construction machinery, 

personnel, and materials. This project aims to apply AI 

image recognition to construction progress control, 

focusing on the use of object detection technology in AI 

image recognition to achieve automated recognition of 

various work progress in construction sites. 

However, constrained by factors such as the site's 

scope, layout, component obstructions, and camera wide 

angle, AI image detection can only address detection 

within a single image, making it challenging to cover the 

overall area. Even with multiple cameras set up to 

encompass the overall area, integrating the detected 

results from these cameras and automating the 

comparison with the construction planning schedule still 

requires the development of effective solutions. 

Therefore, this project further integrates AI image 

detection with BIM technology and develops a prototype 

system. This system, utilizing multiple cameras, applies 

an AI image recognition model to recognize the 

construction status of work items within the images. 

Subsequently, through the BIM model, it achieves image 

alignment and identifies the corresponding components, 

inputting the construction progress of the respective 

components into the BIM model. Finally, in the 

application program, a visual representation using a color 

concept is employed to present different progress states, 

enabling project managers to control the construction 

progress in real-time. 

This study will establish an image-based construction 

progress detection model applicable to the construction 

phase, providing project managers with a method to 

assess construction progress states through image object 

detection. Adopt the BIM model for the integration of 

component construction states, automatically inputs the 

corresponding component progress states into the BIM 

model. This not only avoids variations in construction 

progress judgment among different personnel but also 

enhances the utilization of human resources, thereby 

improving the efficiency and convenience of on-site 

progress management. 

Based on the background, this study plans to propose 

a progress object detection module used in the 

construction phase. By collecting images of the progress 

of each stage of construction, it can be used as training 

data. By combining common model architecture, an 

object detection model suitable for identifying 

construction progress is selected. Apply the transfer 

learning method and adjust model parameters to improve 

the recognition rate, and then find the most suitable 

model for construction progress detection. Finally, 

integrating with the BIM model at the application end 

will achieve component positioning, integrate multiple 

images of the same component for detection input, and 

address differences in progress judgment due to manual 

input and optimize human resource utilization. 

The study will be divided into four phases. First is the 

collection of construction progress image data, followed 

by the training and testing of the object detection model, 

optimization and validation of the object detection model, 

and finally, the integration of BIM for automated and 

visualized construction progress monitoring. 

In terms of data collection, cameras will be installed 

at the construction site to collect image data, 

supplemented by collecting relevant construction 

progress photos from online sources. 

The establishment of the object detection model 

adopted transfer learning. This pre-trained model will 

undergo training and testing to seek an optimal object 

detection model. The parameters of the model will be 

systematically optimized and adjusted to enhance the 

accuracy of the detection model. 

During the model validation and testing phase, 

images or videos directly obtained from construction 

sites will be utilized. Image recognition will be applied 

to identify the construction activities in the data source.  

Adopting the BIM model as the data integration hub, 

simulating camera deployment conditions, utilizing 

image recognition technology to detect the construction 

status of components within the coverage area, and 

inputting it into the model components. The integrated 

construction progress of components can be 

automatically input into the scheduling system. 

The prototype system will compare with the original 

schedule, and using different progress visualization 

methods, categorize the results by color. Through 

visualization, management personnel can grasp the 

progress concretely and intuitively in real time. 

 

Figure 1.The process diagram of image-based 

construction progress detection model 
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Figure 2. Demo diagram of integrates AI image 

detection with BIM technology 

2 Related Research 

The research topics related to this study include real-

time progress monitoring and AI image recognition, 

especially for construction progress monitoring. The 

literature review for these topics are as follows. 

2.1 Real-time Progress Monitoring 

Past research has utilized various Field Data 

Capturing Technologies (FDCT) [7] to collect progress 

data from construction sites, integrating them with 

Building Information Modeling (BIM) to enhance 

construction progress monitoring. These include image 

recognition of construction elements, alignment with 4D 

models for comparison, RFID for tracking personnel and 

materials, UWB positioning systems for progress 

tracking, and laser scanners for construction environment 

scanning to create 4D As-Built BIM models, compared 

with 4D Designed BIM models [8-11]. 

These technologies still have limitations for 

improvement in progress management applications, such 

as the need for confirmation of work status for UWB and 

RFID, like verifying completion and installation. Point 

cloud analysis requires more time for processing to the 

object level for project progress. 

2.2 AI Image Recognition for Construction 

Progress Monitoring 

In recent years, the application of image recognition 

in construction through deep learning has been steadily 

increasing, encompassing the identification of elements 

like construction workers, materials, and machinery [12-

13]. The studies of applying AI image recognition, for 

construction progress monitoring are relatively few. 

Utilizing image recognition for automated progress 

monitoring in construction projects involves extracting 

features through deep learning to detect and identify 

construction status. Zheng et al. [14] utilized R-CNN 

model to automatically detect modules and identify their 

status, such as Hooking, Lifting, and Final Positioning. 

With the affordability of cameras, gathering rich 

information from construction sites to achieve automated 

visual monitoring of construction sites becomes feasible 

[15]. Martinez et al. [16] utilized low-resolution CCTV 

images and combined deep learning methods (R-CNN) 

with Finite State Machines (VFSM) to identify labor and 

key equipment in floor manufacturing. The study 

presents the calculation of task duration and working 

hours, providing managers with clear and real-time 

insights into workstation progress. 

The study adopts deep learning-based recognition 

technology to propose a framework suitable for on-site 

construction progress management. Data collection is 

conducted using fixed on-site cameras to improve the 

costly investment in equipment and manpower. The use 

of YOLO and transfer learning enhances efficient 

detection, particularly in scenarios with limited 

construction photos. Furthermore, this study aims to 

define major operational steps in structural engineering, 

such as rebar binding, formwork assembly, and concrete 

pouring, for effective control and management of 

construction progress. Additionally, suggestions for 

integrating progress management systems will be 

provided, improving existing research. 

3 Methodology  

To achieve these objectives, we designed a prototype 

system, which includes the required model architecture, 

on-site install flow, and functional displays. Building the 

progress object detection module in the construction 

phase, configuring site cameras, data integration and 

presentation will be detailed in the following sections. 

3.1 Building Progress Object Detection 

Module in the Construction Phase 

The study proposes the utilization of a progress object 

detection module for the construction phase. By 

collecting images of construction progress at various 

phases and applying transfer learning, the model 

parameters will be adjusted to enhance recognition. A 

comparison of various models will be conducted to 

identify the most suitable one for construction progress 

detection. 

The implementation is divided into three stages: 

image classification and data collection, selection of the 

object detection model, and training/testing of the object 

detection model. 

3.1.1 Image Classification and Data Collection 

To collect datasets for training the model, this study 

focuses on collecting relevant images from architectural 

projects, specifically targeting the structural construction 

phase. To mitigate redundancy in the training data that 

may result in high feature similarity and potentially 

impact the model's training outcomes, photos are 

collected through three distinct approaches: daily 
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progress photos, time-lapse cameras on site, and online 

sources. 

In this study, focusing on architectural structures, the 

collected progress images are mainly categorized into 

rebar tying, formwork assembly, and concrete pouring. 

Recognizing variations in the construction sequence 

between columns and walls, which proved to be 

confusing in initial tests, the construction phases are 

dissected into distinct phases: rebar tying of columns, 

pre-rebar tying of walls, completion of rebar tying of 

walls, formwork assembly of walls, formwork assembly 

of columns and concrete pouring. 

3.1.2 Selection of Object Detection Model 

The object detection model is composed of three parts: 

input, convolutional neural network layers, and detection 

layers. The convolutional neural network layers serve as 

the main network backbone, responsible for extracting 

image features and producing a feature map by merging 

the extracted features through pooling layers. The 

detection layers are responsible for the final prediction of 

object categories and generating candidate boxes. 

To explore and seek a suitable combination of 

detection models, this study chose one-stage and two-

stage object detection models, and selected models that 

have performed well in most related studies, YOLOv5 

represents the one-stage model, while Faster R-CNN 

represents the two-stage model. Then, five groups of 

convolutional neural network layers and detection layers 

are constructed. 

Table 1 Comparison of object detection model 

combinations 

 
Convolutional 

Neural Network 

Layers 

Detection 
Layers 

mAP(%) FPS 

1 ResNet50 YOLOv5 27.6 11.7 
2 ResNet50 Faster R-CNN 31.8 4.3 

3 DenseNet121 YOLOv5 31.1 10.3 

4 DenseNet121 Faster R-CNN 38.3 3.9 
5 CSPDarknet53 YOLOv5 51.1 17.6 

The training conditions are set to 300 epochs, with 16 

samples per batch, and image pixels of 640x640. The 

pixel size of the images utilizes the maximum value 

allowed by the computer hardware to avoid suboptimal 

training results. Regarding optimization parameters, the 

original default values of the model will be used, and to 

examine the fundamental performance of the model, no 

transfer learning pre-trained weights will be adopted. The 

model will be trained from scratch to obtain the detection 

model's training results. 

Among the selected detection model combinations, 

the model with the highest individual accuracy will be 

compared. Considering conditions such as detection box 

overlap and detection speed, YOLOv5 - CSPDarknet53 

will be adopted as the detection model for this study. 

 

Figure 3. Compare prediction results and 

candidate boxes of detection models 

3.1.3 Training and Testing of the Object Detection 

Model 

The quantity of the dataset can impact the accuracy. 

During the initial stages, obtaining a clear and adequate 

number of construction progress photos posed challenges. 

This is mainly due to construction activities developing 

in different phases, and the collection of construction 

photos progresses gradually with the advancement of the 

project, making it difficult to rapidly and substantially 

increase the data volume. 

To address this, the study utilizes the mosaic feature 

proposed in YOLOv4 [17] as a form of data 

augmentation to generate additional photo data, aiming 

to increase the number of the dataset. Additionally, the 

study adjusts hyperparameters during the training process 

to enhance the detection accuracy of the model. In this 

phase, transfer learning is applied, utilizing the dataset 

named MS COCO (Microsoft Common Objects in 

Context) [18-19] to train the YOLOv5 model. This 

source was designed to detect and segment common 

objects like humans, cars, and buses in daily life. The 

dataset consists of 328K images and 80 object categories. 

Through transfer learning and hyperparameters 

optimization, the optimized model improves 20.4% 

accuracy over the original model, with no significant 

degradation in FPS (frames per second, FPS) 

performance. On average, the optimized model shows 

better loss values and performance compared to the initial 

architecture. 

Table 2 Model optimization performance 

YOLOv5 
Accuracy 

(%) 

Recall rate 

(%) 

mAP 

(%) 

FPS 

 

Initial model 63.1 74.67 51.1 17.6 

Optimization 

model 
83.5 71.74 57.9 17.4 

3.2 Site Cameras Deployment and Data 

Integration and Presentation 

Upon the completion of the detection model, many 

surveillance cameras are deployed on the construction 
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site to record real-time video during the ongoing 

construction. This process is aimed at further recognizing 

the construction progress of each component. The 

positioning and alignment of cameras are constrained by 

some factors such as the site location and installation 

conditions. Therefore, systematic positioning and 

alignment are adopted to facilitate recognition and 

utilization of image data. In addition, image capture is 

performed from multiple angles, many components will 

be recorded repeatedly. This study provides a procedure 

to integrate images and presents a visual approach that 

enables management personnel to intuitively and 

promptly comprehend the construction progress. 

3.2.1 Site Cameras Deployment 

The input source for this study is captured from the 

surveillance camera at the site. To ensure alignment 

between the input and the system's camera, two sets of 

camera initialization, positioning, and alignment 

configurations must be executed. The methods vary 

depending on whether the on-site surveillance cameras 

are already installed or are to be set up based on 

parameters. In this study, the coordinate system in Unity 

is utilized as a reference for calculating the relative 

spatial position after importing the model. Different 

processes and methods for installation are planned for 

two scenarios, as illustrated in the figures below. 

 

Figure 4. Case of on-site surveillance cameras are 

already installed 

 

Figure 5. Case of on-site surveillance cameras are 

set up based on system parameters 

3.2.2 Mechanism of Construction Image Detection 

and Input 

The return of images captured by the surveillance 

cameras at the site to the system's main server, the image 

detection model is utilized for recognition. The 

recognition results are outputted as a txt format, 

including information such as the coordinates of the 

detection box's center point, length, height, recognized 

progress phase, and mAP value. 

The consistency perspective has been established 

between Unity and site cameras, the photos captured by 

the cameras can be considered aligned with the 

perspective of the model. Therefore, use the Unity Physic. 

Raycast function for component selection to find the 

component corresponding to the recognition result. 

 

Figure 6. Demo of Physic. Raycast function for 

component selection 

Because the system integrates multiple cameras, it 

may recognize different phases for the same component. 

This study proposes three solutions, allowing users to 

choose the most suitable method for their engineering 

project. These are prioritized based on accuracy (mAP), 

construction phase, and detection frequency. This 

approach enables the provision of distinct update 

principles based on the condition of the engineering 

project. 

3.2.3 Visual Presentation and the User Interface 

Through the automated progress update function, it 

can reduce the human resources required for project 

management. On the other hand, visual presentation 

allows operators to understand the construction progress 

through screen presentation, thereby effectively 

improving work efficiency. This study proposes two 

visual presentation methods, explained as follows: 

Users can select components through the Physic. 

Raycast function in the operation interface. This will 

query and display different colors corresponding to the 

construction phases detected by image recognition, 

simulating the on-site construction situation. 

 

Figure 7. Query and display different colors 

corresponding to the construction phase 
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Another visual presentation method focuses on the 

overall progress control. Users can update component 

progress through the progress update interface. When this 

function is enabled, the system will compare and analyze 

the planned and actual completion dates for each 

component, presenting the results through the 3D model 

display area. 

 

Figure 8 Process of schedule update and model 

presentation 

4 Application Scenarios 

Based on the prototype system developed, this section 

will conduct tests through various scenarios to showcase 

the functionalities developed to achieve the research 

objectives. The following sections will categorize the 

system's operations and provide detailed demonstrations 

and explanations for each application mode. 

4.1 The Camera Deployment of the Prototype 

System 

In the initial phase, this study utilized a simulated 

construction site in an interior parking floor of the 

building to validate whether the camera deploy 

functionality of the prototype system aligns with the 

requirements of typical construction scenarios. The red-

highlighted area in the layout represents the scope of the 

research tests. Four surveillance cameras with 

corresponding field-of-view lenses were strategically 

installed both on-site and within the system, facilitating 

subsequent progress detection through the detection 

function and verifying its capability to cover the entire 

testing area. 

 

Figure 9. The layout of the research tests scope 

and camera deploys 

The test has already pre-installed multiple perspective 

cameras in the system, and the desired camera position 

data will be obtained within the prototype system. In the 

system interface's 3D model display area, the selected 

perspective camera position will be shown. Users can 

choose a reference component closest to this camera by 

clicking with the mouse and calculating the X and Y-axis 

displacement. Finally, at the site, using this reference 

component as the origin, surveillance cameras will be set 

up using relative displacement. 

 

Figure 10. Demonstration of Camera set up on site 

and in model 

4.2 Recognize Various Construction Phases 

This study utilized an existing building to simulate 

the site environment and whether the detection model can 

recognize various construction phases. The study 

modified the final images to depict scenarios such as 

rebar tying of columns, formwork assembly of walls, and 

concrete pouring. 

Through the execution of image recognition functions, 

the prototype system of this study successfully 

recognized the construction phases of components, 

except for components that have been obstructed. 

 

Figure 11. Simulate the completion phase of rebar 

tying and formwork assembly 
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Figure 12. Simulate the completion phase of 

concrete pouring 

4.3 Multi-angle View Detection and Results 

Integration 

After the AI conducts object detection and outputs the 

results, the prototype system automatically reads the 

information. Subsequently, from four different 

perspectives, the BIM model is interactively selected 

using the Unity Physic. Raycast function. Based on these 

selected components, progress data is updated. The BIM 

model, representing the defined testing area, adjusts its 

color presentation according to the different construction 

phases. The extraction of the updated results from the 

selected components confirms the effective coverage of 

the entire construction area using multiple cameras. 

 
Figure 13. The completion phase visualization  of 

rebar tying and formwork assembly 

 
Figure 14. The completion phase visualization  of 

concrete pouring 

4.4 Use Surveillance Cameras for Recognize 

Testing during the Construction Stage 

After validating the relevant functions indoors, the 

system proceeded to on-site testing in a construction 

setting. In this case, focusing on a construction project, 

CCTV images from the construction site were used as the 

image source, and the BIM model for the project was 

constructed for system testing. Initially, the prototype 

system deployed surveillance cameras. After measuring 

and calculating the data for the coordinates of the 

system's perspective camera at the site, the system 

completed the installation of the perspective camera. The 

comparison between the system's perspective view and 

the construction site image after deployment is shown in 

the following figure. 

 

Figure 15. Comparison of system perspective and 

construction site images 

Subsequently, the construction image recognition 

function was executed. The prototype system, after 

detection, retrieved the results and utilized the 

functionality to select the components to be updated. The 

comparison between the recognition results and the 

system interface is illustrated in the following figure. 

This presentation of results demonstrates the feasibility 

of various functions of the prototype system in practical 

cases. 

 

Figure 16. Comparison of recognized results and 

visualization component screen 

5 Conclusions 

This study proposes a prototype system that integrates 

AI image recognition, BIM, visualization technology, 

and on-site construction image monitoring. It not only 

provides real-time monitoring of construction site 

progress but also establishes an automated and visual 

management system. The AI detection and recognition 

integration mode, based on BIM, realizes an automated 

and visual construction progress management platform. 

The system automates the integration of detection 

results from multiple surveillance cameras, ensuring 

comprehensive progress control over the entire 

construction area. It also utilizes a BIM model to 

integrate construction schedules, achieving automated 

updates to the schedule, thus reducing the operational 
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loading on project managers. 

In terms of functionality, the system integrates a BIM 

model and 4D construction management, using 

visualization technology to present different construction 

phases according to the schedule. Additionally, the 

system uses different colors on the component to show 

detection results, simultaneously comparing planned 

schedules with actual schedules. This color-coded 

representation indicates whether the construction 

progress of components is ahead or behind, providing 

project managers with a more concrete and intuitive 

understanding of construction progress. 

With the continuous development of mixed reality 

technology, this study plans to integrate wearable mixed 

reality devices in the future. This involves presenting the 

model on MR devices to assist less-experienced on-site 

engineers in quickly familiarizing themselves with the 

site conditions. Additionally, by replacing camera 

installations with wearable mixed-reality devices, the 

aim is to achieve real-time image detection and updates. 
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