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Abstract – 

Valuable information is embedded in construction 

images which can be used for different construction 

engineering and management purposes. The 

availability of low-cost cameras and robust artificial 

intelligence methods has increased the use of imaging 

technology in construction sites. However, these rich 

data sources are not often used to their full potential 

due to subjective documentation, leading to 

potentially overlooking valuable content. This study 

proposes an ensemble approach that utilizes deep 

learning techniques for object recognition, pixel-level 

segmentation, and text classification to annotate 

images from outdoor construction scenes at medium 

(ongoing activities) and high (project type) levels. 

Experimental results demonstrate the potential of this 

approach by achieving a 70% overall recall rate. 
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1 Introduction 

The construction industry has vastly employed image and 

video recording technologies, and a growing number of 

research projects investigate methods for better 

utilization of this valuable data [1]. This trend has been 

facilitated by the emergence of low-cost capturing 

systems, robust computer vision methods, and the 

flexibility in imaging offered by the UAV systems [1], 

[2]. The resulting image databases, typically organized 

through manual labels and metadata, could serve various 

project management purposes, such as progress tracking, 

quality inspection, safety audits, and training [1]. 

However, the unrestrained accumulation of these visual 

data poses challenges in annotation and retrieval, which 

potentially results in underutilizing valuable information 

[3]. Unlike captioning of generic images, the technical 

complexities of construction images demand expert 

knowledge for a practical annotation [4]. Past research 

focused on feature extraction and object detection to 

enhance image annotation [5]. Some explored equipment 

poses [6] and interactions [7], while others provided 

semantic annotation for construction videos through 

spatiotemporal data interpretation of equipment motion 

[4]. However, current annotations mainly cover 

appearing resources and their interactions, lacking 

identification of ongoing activities without visible actors. 

For examples, methods were developed to caption an 

image as “a dozer is pushing the soil on the ground” [7] 

or “the excavator is loading dirt to the truck”. [14]. But 

there is a gap to provide useful annotation where there is 

no actor, i.e. equipment and workers, in the image. 

This research introduces an innovative ensemble 

method utilizing deep learning for low-level, medium-

level, and high-level annotations of outdoor construction 

images, defining objects and materials as low-level, 

activities as medium-level, and project types as high-

level annotations. The proposed approach integrates deep 

learning-based object detection, semantic segmentation, 

and text classification, focusing on outdoor construction 

images to demonstrate the potential advancements of this 

approach. Since indoor and outdoor construction scenery 

includes distinct elements and resources, this research 

only focuses on outdoor settings. 

2 Literature Review 

The construction industry has experienced widespread 

application of digital imaging since the 1990s, leading to 

a substantial increase in image-making rates [8]. Initial 

efforts focused on feature extraction for image retrieval 

based on material patterns and shapes, incorporating 

metadata like location and date [9]. Feature-based object 

detection techniques were used to detect construction 

equipment and workers, but they had mediocre 

performance and faced limitations in multiclass 

detections [10]. Deep convolutional neural networks 

(DCNN) addressed these limitations, offering multiclass 

recognition, automated feature extraction, and improved 

detection performance [11]. Some of the DCNN models, 

like Region-Based CNN (R-CNN) [12] and You Only 

Look Once (YOLO) [13], were employed in construction 

contexts for different tasks like progress monitoring [14] 
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and safety management [15]. DCNN models were also 

employed for semantic segmentation at pixel-level 

recognition. Methods like Mask R-CNN [16] and 

DeepLab V3+ were used for progress estimation [17], 

and understanding of construction visual data [18]. 

Efforts were made to produce semantic annotations by 

combining object recognition and Bayesian belief 

networks [4]. Long Short-Term Memory (LSTM) 

architecture [19] could be employed in conjunction with 

a CNN model for extracting semantic information from 

images. This approach contributed to safety management 

[20] and descriptive caption generation for equipment 

activities and interactions [7] by analyzing the interaction 

between two objects. Recent developments to caption 

construction images focus on actors and their action(s), 

and generally produce a caption as “an equipment/worker 

is doing something” [7, 14, 28]. Many construction 

images, however, do not contain equipment/workers and 

only capture a snapshot of the progressing construction 

work. This research seeks to address this gap by 

integrating detected objects and materials/surfaces to 

annotate construction images with ongoing activities and 

project types, even in cases where the main actors, such 

as equipment and workers, are not present in the images. 

3 Research Methods 

This study proposed an ensemble model, integrating 

three machine-learning models to predict general 

construction activities and project types in outdoor 

construction site images. The approach involved two 

deep-learning models for object detection and surface 

segmentation, and a third text classifier using a neural 

network for predicting construction activities and project 

type/phase. In this approach, the results of object 

detection and semantic segmentation, i.e. low-level 

annotations, are fed to the text classifier to predict 

medium-level and high-level annotations. Each model 

was trained and tested on separate datasets. Figure 1 

shows a flowchart of the developed approach with 

detailed steps outlined in the subsequent sections, 

including results, discussion, and conclusion. 

 

Figure 1. Flowchart of the Proposed Framework 

3.1 Data Collection 

This study used images of diverse construction 

projects collected from open online platforms like 

Google Images, YouTube videos, Pexels, and Pixabay to 

train and test the developed models. Some of the images 

were taken by the authors from construction sites using 

smartphones. Separate datasets were created for each 

model, tailored to their specific objectives. For the object 

detection model, 5,260 images featuring various 

construction equipment were collected. A dataset of 321 

images was collected for the semantic segmentation 

model. The text classifier dataset comprised 545 images 

representing different types and phases of outdoor 

construction projects. 

3.2 Object Detection Module 

The object detection module was trained using 4,990 

images (95% training and 5% validation) containing 

various construction equipment and workers. The 

training process involved preparing raw data, resizing 

images, and labelling objects using the Image Labeler 

tool by MATLAB [24]. Eleven classes were manually 

labelled with bounding boxes, including nine 

construction equipment types (excavator, bulldozer, 

scraper, off-road truck, truck, loader, compactor, grader, 

concrete mixer), in addition to two generic classes of 

humans and regular cars. The YOLO v4 with DarkNet53 

as the backbone, pre-trained on the COCO public dataset, 

was chosen for its performance and processing time. The 

training was conducted on a desktop computer with 32 

GB RAM, a 4.7 GHz Intel Core CPU, and an NVIDIA 

GeForce RTX 3060 GPU. Hyperparameters included a 

gradient decay factor of 0.9, a learning rate 0.001, and 

data augmentation with random horizontal reflection and 

scaling. Batches of 8 images were processed over 85 

epochs using the MATLAB® 2022a software Deep 

Learning toolbox [24] for training and testing. 

3.3 Semantic Segmentation Module 

The second DCNN model employed semantic 

segmentation to classify image elements, like materials 

and construction surfaces, that might be impractical to be 

recognized by the object detection. This model classifies 

objects at the pixel level, with training and test datasets 

manually annotated using the same Image Labeler tool 

utilized for the object detection module. Twenty-one 

classes, including concrete, formwork, glass, tower crane, 

human, bin, dirt, equipment, lumber, asphalt, steel, rebar, 

scaffold, bitumen, aggregate, rail, waterproofing, pipe, 

curing blanket, brick, and other (such as sky, mountains, 

trees), were defined for labeling major elements in 

construction sites. The DeepLab V3+ ResNet50 [25] 

model was retrained using a labeled dataset of 220 

images. The Deep Learning toolbox of MATLAB® 
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2022a software was used for training [24], adjusting 

stochastic gradient descent with a learning rate of 0.01 

and a momentum value of 0.9. Batches of six images and 

100 epochs were utilized, with data augmentation 

involving random X and Y translations and right/left 

pixel reflections. The training process was carried out on 

the same desktop computer mentioned earlier. 

3.4 Text Classification Module 

The last model in the system is the text classifier, 

which analyzes the outcomes of the object detection and 

semantic segmentation modules to predict medium-level 

(activities) and high-level (project types) annotations. 

This module was trained using a dataset of 385 images 

from a diverse set of construction projects. The objects, 

associated activities, and project phases/types were 

manually extracted from these images based on the 

authors' construction expertise. Then, these extracted 

textual data were manually converted into binary format, 

with 1 representing the presence and 0 indicating the 

absence of objects, surfaces, activities, or project types in 

the images. The dataset encompassed seven types of 

construction projects: building sub-structure, building 

super-structure, bridge construction, road construction, 

heavy construction (i.e., tunnel construction and subway 

construction), railway construction, and pipeline 

construction, and fifteen activities, including rebar 

installation, steel erection (structural), formwork 

shuttering and removal, concrete work, lumber work, 

earth hauling, paving work, material lifting, earthwork 

(i.e., loading, compacting, and removing dirt), excavation, 

masonry work, glazing, rail work, waterproofing, and 

pipework.  

Since the neural network (NN) method has shown 

promising results in various construction-related analysis, 

such forecasting labor productivity [21], analyzing 

accidents [22], and project delay risks [23], it was also 

used in this research.  NN models with multiple hidden 

layers and varying neuron numbers were developed using 

RapidMiner Studio [27], which offers various operators 

for data retrieval, model evaluation, and algorithms. The 

study trained and tested the model across nine 

configurations, with the most effective performance 

observed using two hidden layers, each with five neurons, 

and a Rectifier activation function over 100 epochs. The 

module training was conducted on a laptop with 16 GB 

RAM, 2.3 GHz Intel Core i7-11800H, and an NVIDIA 

GeForce RTX 3060 GPU. 

3.5 Ensemble Model 

The ensemble model combines all the mentioned 

modules, in which the trained object detection and 

semantic segmentation models extract low-level data, i.e. 

detected objects and material/surfaces, and pass them as 

input to the text classifier for medium-level and high-

level annotations. 

4 Experimental Results 

The developed modules and the ensemble model were 

assessed in four phases: 1) the object detection module 

evaluation, 2) the semantic segmentation module 

evaluation, 3) the text classifier evaluation, and 4) the 

ensemble model evaluation, which encompasses all the 

modules and possible propagation of errors. 

4.1 Object Detection Module Results 

The object detection module was evaluated with 270 

images from various construction site scenery gathered 

from the same sources as the training dataset. Model 

evaluation metrics included precision and recall rates. 

Precision is denoted as the proportion of correctly 

predicted positive instances (true positives) out of all 

predicted positives (true positives + false positives). 

Recall as the proportion of correctly predicted positive 

instances (true positives) out of all actual positive 

instances in the dataset. The 11 object classes were 

evaluated individually in addition to the overall 

performance. Table 1 presents the performance of each 

class by the trained YOLO V4 – DarkNet50 classifier. 

Table 1. Performance metrics for each class 

Classes Recall Precision 

Excavator 80.28% 93.44% 

Bulldozer 91.43% 87.67% 

Scraper 76.92% 78.95% 

Off truck 87.93% 72.86% 

Truck 71.83% 77.27% 

Loader 61.36% 57.45% 

Human 54.10% 94.29% 

Compactor 76.36% 66.67% 

Grader 91.43% 78.05% 

Car 84.00% 72.41% 

Concrete Mixer 78.57% 61.11% 

The precision rates for the human and excavator 

classes exceeded 90%, while other equipment classes like 

grader, truck, scraper, and bulldozer achieved precision 

rates higher than 75%. The object detection classifier 

demonstrated an overall recall rate of 77.7% and an 

overall precision rate of 76.4% in detecting construction 

equipment and workers. 

4.2 Semantic Segmentation Module Results 

The semantic segmentation model's performance was 

assessed using a test dataset of 101 images collected from 

open online sources for an outdoor construction setting. 

The test images were manually labeled with the 21 
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previously mentioned classes to develop the ground truth 

file for model evaluation. The mean Intersection over 

Union (mIoU) metric was the evaluation metric used, 

which calculates the overlap between the ground truth 

and the classifier output, divided by the area of their 

union. The Deeplab V3+ with ResNet50 has achieved a 

weighted mIoU of 54.3%. Table 2 presents the results for 

the 21 classes in test images. Some classes, such as tower 

crane, dirt, human, steel, curing blanket, and equipment, 

achieved mIoU rates higher than or equal to 50%. Others, 

including concrete, rebar, lumber, and brick, had mIoU 

rates ranging from 40% to 50%. Classes like formwork, 

glass, asphalt, pipe, scaffold, bitumen, aggregate, and bin 

exhibited mIoU values between 17% and 39%. However, 

the model exhibited poor performance in classes like rail 

and waterproofing, potentially due to their low number 

of sample pixels in the training dataset. These results 

show the model's strengths and limitations, which are 

further detailed in the discussion section. 

Table 2. Semantic segmentation classes' mIoU 

Classes mIoU Classes mIoU 

Concrete 45% Steel 51.3% 

Formwork 27.6% Rebar 46.6% 

Glass 26.8% Scaffold 16.8% 

Tower crane 56.2% Bitumen 13.1% 

Human 50% Aggregate 25% 

Other 69.3% Rail 10.6% 

Bin 20.7% Brick 49.1% 

Dirt 67.5% Waterproofing 2.9% 

Equipment 60% Pipe 17% 

Lumber 43.7% Curing_Blanket 68.2% 

Asphalt 39% Steel 51.3% 

Despite the varying mIoU rates across the 21 classes, 

the semantic segmentation model mainly aimed to 

identify major objects/surfaces in construction images for 

input to the text classifier. In this study, the top 7 detected 

classes were selected for the text classifier based on their 

pixels counts. A "commonality percentage" assessment 

method determined the accuracy of the top 7 segmented 

classes in representing the actual classes in test images. 

Figure 2 illustrates how the commonality percentage of 

actual classes was calculated among the top 7 detected 

classes. The average commonality percentage across 101 

test images was 85.9%. 

 

Figure 2. Commonality percentage of existing 

actual classes 

4.3 Text Classifier Module Results 

The text classifier model was evaluated on 160 test 

images using precision and recall rates as performance 

metrics. The aim of this test setup was to assess the 

performance of the text classifier alone to assess how 

well it can annotate activities and project phase/type 

based on the correct appearing objects and surfaces. Thus, 

the ground truth objects and surfaces were given to the 

models. In other words, the object detector and semantic 

segmentation classifiers were not used to feed the text 

classifier. The text classifier achieved an overall 

precision rate of 92.1% and an overall recall rate of 

86.7%. Table 3 and Table 4 present the results for 

medium-level and high-level predictions of the NN text 

classifier. Most activity predictions achieved high 

precision and recall rates exceeding 90%. Road, rail, and 

pipe construction showed higher results than other 

project types among the high-level predictions. 

Table 3. Medium-level (activities) prediction results 

Class Precision Recall 

Rebar Installation 98.1% 100% 

Steel Erection 88.2% 93.8% 

Formwork Shuttering and 

Removal 

98.2% 100% 

Concrete Work 95.3% 99% 

Lumber Work 75% 81.8% 

Earth hauling 100% 86% 

Paving work 75% 60% 

Material Lifting 100% 100% 

Earthwork 100% 86.5% 

Excavation 100% 100% 

Masonry Work 66.7% 100% 

Glazing 80% 57.1% 

Rail Work 100% 86.7% 

Waterproofing 100% 87.5% 

Pipework 92.9% 100% 

Overall Medium-Level 95.9% 94.6% 
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Table 4 High-level (project type) prediction results 

Class Precision Recall 

Building Sub-structure 51.6% 53.3% 

Building Super-structure 86.5% 59.3% 

Bridge Construction 33.3% 8.3% 

Road Construction 90.3% 96.6% 

Heavy Construction 83% 50% 

Railway Construction 100% 93.3% 

Pipeline Construction 100% 90% 

Overall High-Level 80.2% 65.6% 

4.4 Ensemble Model Results 

The same 160 images were used to test the NN text 

classifier to evaluate the entire system (ensemble model). 

The object detection and segmentation classifiers 

processed the images, and their results were passed to the 

text classifier. The ensemble model achieved an overall 

precision of 60.23% and a recall of 70%. Table 5 and 

Table 6 detail the medium-level and high-level prediction 

results. Figure 3 shows a sample image from the test 

dataset. It encompasses a building superstructure project, 

formwork activity, concrete work, lumber, earth hauling, 

and material lifting. The model correctly predicted the 

project type and four activities. However, rebar 

installation was also classified, while lumber work was 

missed, resulting in 5 true positive instances, 1 false 

positive instance, and 1 false negative. Thus, the 

ensemble model had a precision and recall rates of 83.33% 

in this sample. 

 

Figure 3. Ensemble model test image sample 

Among the medium-level classifications, there were 

different performance trends. Concrete work, material 

lifting, and earthwork exhibited high-performance rates. 

Some activities, such as rail work, paving work, 

pipework, and earth hauling, demonstrated higher 

precision than recall, meaning that the model made fewer 

predictions than the activities in the ground truth dataset, 

although most were correct. On the contrary, rebar 

installation, steel erection, formwork shuttering and 

removal, and lumber exhibited recall rates surpassing 

precision, which means that the model made many 

predictions for these activities; however, not all were 

correct. Waterproofing and glazing showed lower 

performance, with precision and recall rates below 33%, 

and masonry work was not detected. Among high-level 

classifications, railway and pipeline constructions 

demonstrated precision values of 100%, yet their recall 

values were only 33.3% and 10%, respectively. Road 

construction and building super-structure followed, 

achieving precision rates of 95.65% and 63.89%, 

respectively. Building sub-structure, bridge, and heavy 

construction obtained less than 36% precision values, 

indicating a lower performance than other project types. 

Table 5. Medium-level (activities) prediction results 

Class Precision Recall 

Rebar Installation 60.98% 94.34% 

Steel Erection 40% 75% 

Formwork Shuttering and 

Removal 

51.85% 100% 

Concrete Work 78.57% 97.1% 

Lumber Work 30.95% 59.1% 

Earth hauling 76.92% 47.62% 

Paving work 60% 30% 

Material Lifting 80.85% 95% 

Earthwork 87.1% 72.97% 

Excavation 66.67% 51.28% 

Masonry Work 0.00% 0.00% 

Glazing 28.57% 28.57% 

Rail Work 100% 46.67% 

Waterproofing 33% 25% 

Pipework 85.71% 46.15% 

Overall Medium-Level 63.77% 78.2% 

Table 6 High-level (project type) prediction results 

Class Precision Recall 

Building Sub-structure 35.59% 70% 

Building Super-structure 63.89% 42.59% 

Bridge Construction 11.54% 25% 

Road Construction 95.65% 75.9% 

Heavy Construction 12.5% 10% 

Railway Construction 100% 33.33% 

Pipeline Construction 100% 10% 

Overall High-Level 48.1% 47.5% 

The ensemble model exhibited a noticeable 

performance reduction due to errors from the object 

detector and semantic segmentation compared to 

standalone text classifier. A sensitivity analysis was 

conducted in two scenarios to assess the impact of each 

DCNN module. In the first scenario, only the object 

detection classifier was used with the ground truth 

segmentations, while in the second scenario, only the 

semantic segmentation classifier processed images. 
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Based on the ground truth dataset for the text classifier, 

the analysis revealed that semantic segmentation had a 

more pronounced effect on the performance of the overall 

system than the object detection. Scenario two exhibited 

a 6% drop in precision and a 19.38% drop in recall 

compared to scenario one, as shown in Figure 4. 

 

Figure 4. The difference between the two 

scenarios and the base scenario 

5 Discussion 

The outcomes obtained from the three modules 

showed promising results in improving the annotation 

of outdoor construction images, by providing 

appearing objects, ongoing activities, and project 

types. However, these results also showed challenges 

and limitations encountered by the classifiers in 

specific instances. The subsequent four subsections 

discuss these challenges and propose potential 

solutions to enhance the practical application of the 

proposed approach. 

5.1 Object Detection Module 

The object detection classifier resulted in recall and 

precision rates of 77.7% and 76.6% across 11 object 

classes, respectively. Despite this promising performance, 

there were instances of missed or misclassified objects. 

For example, truck, off-truck, and concrete mixer classes 

exhibited lower precision rates than major equipment like 

excavators and bulldozers. Some misclassifications 

included regular dump trucks identified as off-road dump 

trucks and concrete mixers classified as regular trucks. 

Similarities in the front view of this equipment from 

different manufacturers contributed to such 

misclassifications. Misclassifications were observed for 

loaders, roller compactors, and graders due to visual 

similarities, specifically from their rearview. Moreover, 

image quality factors, such as resolution and occlusion, 

which are common in busy construction sites, contributed 

to increased false negatives, notably in the human class. 

Enhancing the training dataset with more images 

featuring diverse equipment types and poses could 

potentially improve recall and precision. 

5.2 Semantic Segmentation 

The mIoU metric was utilized to evaluate the 

performance of the semantic segmentation classifier in 

detecting elements in outdoor construction sites. Across 

101 test images, the model achieved an mIoU rate of 54.3% 

in segmenting 21 classes. However, misclassifications 

occurred, especially when elements shared similar visual 

features. The model confused lumber, formwork, and 

wooden scaffolding systems due to material and texture 

similarities. Waterproofing was misclassified as asphalt 

or bitumen, and rail was often detected as steel due to 

similarities in their material composition. Additional 

misclassifications included aggregate as dirt and bitumen 

as asphalt. Pipe was detected as dirt or equipment. This 

module's performance relies highly on the training 

dataset; thus, it is suggested to expand the training dataset 

and enhance image quality. 

5.3 Text Classifier 

The standalone NN classifier achieved an overall 

precision rate of 92.1% and a recall rate of 86.7%. 

However, among high-level classifications, heavy 

construction, building sub-structure, and bridge 

construction exhibited lower precision and recall rates 

than other project types. These misclassifications are due 

to visual element similarities with other project types, as 

illustrated in Figure 5 (a) and Figure 5 (b), where a heavy 

construction project (road underpass) and a sub-structure 

construction of a high-rise shared visual elements like 

excavators, concrete, and dirt, leading to confusion 

during classification. The text classifier faced challenges 

in differentiating instances of these classes, leading to 

higher classification error rates. Heavy construction was 

frequently misclassified as building sub-structure, 

building super-structure, or road construction. Similarly, 

building sub-structure was often confused with bridge 

construction, heavy construction, building super-

structure, and road construction. Moreover, bridge 

construction was mixed up with building super-structure 

and building sub-structure classes. 

 

Figure 5. (a) Heavy Construction (underpass 

construction) and (b) Building sub-structure 

The model struggled to predict paving, masonry, and 

lumber work in the medium-level classification. For 

example, the classifier tended to overpredict lumber work, 
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particularly when lumber was stored on the construction 

site (e.g., for formwork or lagging) without apparent 

lumber work in the image. Paving work was mainly 

classified when bitumen or asphalt was present in road 

project images. However, when a road made of asphalt 

appears in the background of a project, as seen in Figure 

6 in a building sub-structure project, the classifier 

predicts paving work. Furthermore, the presence of 

common road construction equipment, including an 

excavator and dump trucks, in this image further 

confused the classifier. Similarly, some images included 

adjacent buildings made of bricks (and other building 

elements) in the project's background, which is not part 

of the project. The classifier could mistakenly identify 

masonry work in such cases, leading to more false 

positives and reducing the precision rate. 

 

Figure 6. Asphalt roads beside a building sub-

structure project 

5.4 Ensemble Model 

The integration of the three modules had impacted the 

overall performance of the ensemble model. For example, 

it struggled to predict pipeline construction projects, 

achieving a 10% recall rate, due to the poor performance 

of semantic segmentation in classifying "pipes" which 

achieved an mIoU of 16.9%. Consequently, the text 

classifier could not classify a pipeline project type due to 

the inaccurate low-level classification. Similarly, 

masonry work predictions were affected as the text 

classifier predicted masonry work where the "brick" class 

was present among the data, but buildings made of bricks 

in the project surroundings led to such misclassifications. 

Thus, the precision rate for masonry work was 

consequently impacted. The semantic segmentation 

modules also achieved mIoU of 49.1% for "brick" 

detection, further contributing to the ensemble model's 

overall low performance.  

The sensitivity analysis highlighted the substantial 

impact of semantic segmentation on the ensemble 

model's performance; however, developing a robust 

semantic segmentation model was not the primary goal 

of this study. It should be mentioned that a properly 

trained model can result in mIoUs of up to 65%, as shown 

in recent studies [18]. Inherent issues in annotating 

project types in images exist, as an image may include 

limited visual information, making it challenging even 

for experts to accurately determine the project type 

without additional context, as shown in Figure 7. 

 

Figure 7. A retaining wall under construction with 

an unclear project type 

6 Conclusion 

This study introduces an ensemble model utilizing 

computer vision and machine learning to annotate 

outdoor construction images with activities and project 

types. Two DCNN classifiers for object detection and 

semantic segmentation were trained to detect key 

elements and surfaces in outdoor construction scenes. 

These classifiers initially process construction images to 

detect various construction elements, materials, and 

equipment. The identified objects and surfaces are then 

fed to a trained NN text classifier to predict construction 

activities and project phases/types. The results showed 

promising performance, achieving a precision rate of 

60.23% and a recall rate of 70% for predicting 15 

construction activities and seven project types. The 

ensemble model offers potential improvements in 

automating image documentation and retrieval in the 

construction industry, with suggestions to enhance 

performance by increasing training datasets. However, 

one of the limitations of this study is to predict detailed 

activities due to the absence of a temporal dimension, 

relying on still images only. Future research may explore 

dynamic datasets, such as videos, to address this 

limitation. Additionally, a multitask vision language pre-

training approach, such as Bootstrapping Language-

Image Pre-training (BLIP) [27], could be explored to 

develop image and text classifiers simultaneously in 

future work. 
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