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Abstract  
Due to the dynamic aspect of construction sites, 

constant implementation and removal of safety 
equipment is a required practice. This leads to 
frequent manual and time-consuming inspections to 
make sure the safety measures are in place. There is 
the potential to automate the inspection process using 
robots and Deep Learning. Such an approach can 
save time and cost while improving safety. Using 
images collected by an Autonomous Ground Vehicle, 
a Deep Learning model with Domain Adaptation 
techniques is trained to detect and segment safety 
guardrails. The results of the model indicate a 
promising method to assist in automating site safety 
inspection that can make construction sites safer. 
Further work is necessary to validate this effort under 
more realistic and harsh construction site conditions. 
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1. Introduction 

In the dynamic realm of construction safety, 
technological advancements are reshaping traditional 
practices. The construction industry stands out as one of 
the riskiest sectors due to the ever-changing work 
environment. Ensuring the safety of construction workers 
is a vital aspect of a construction business, leading to the 
development of comprehensive regulations and 
guidelines. These measures are designed to protect 
workers during construction activities. Given the 
demanding nature of crafting a secure construction plan, 
it remains a top priority. Consequently, substantial time 
and effort are dedicated to promoting the health and well-
being of workers, preventing fatalities, severe and minor 
injuries, and close-call incidents, also known as 
prevention through design (PtD) [1].  

An analysis of industries and their associated hazards 
in the UK [2] reveals that the private construction sector 
is the second leading sector in workplace injuries and 

fatalities. A recent report summarizing construction 
safety statistics for 2023 shows that falls make up 35% of 
fatalities in construction sites [3]. This underscores the 
significance of the focus on fall hazards and, more 
specifically, protective guardrails. 

Another critical aspect of ensuring safety in 
construction operations involves inspecting and 
pinpointing missing or subpar safety equipment, such as 
protective guardrails. Inspecting collective safety 
equipment is also a labor-intensive task, given the 
dynamic nature of construction sites. Therefore, 
inspections must occur frequently. Additionally, the 
actual installation of safety measures often deviates from 
the intended quality outlined in digital models. 

Hence, in this study we propose a preliminary stage 
of a more automated inspection that improves the current 
human-based solutions onsite. The data collection 
process is based on the work by Gopee et al. [4], which 
uses the existent BIM to generate waypoints of interest 
for the navigation of an Autonomous Ground Vehicle 
(AGV) to collect images (e.g., RGB information) as it 
traverses the designated areas. The collected data can be 
processed and used to train Deep Learning models 
designed for real-time object detection of the elements of 
interest, such as protective guardrails. In this study, a 
YOLOv8 network enhanced by a Domain Adaptation 
technique is used. The differences in construction sites 
due to factors like weather, sunlight, and location result 
in numerous scenarios for the deep learning model to 
analyze and predict outcomes. Each of these cases could 
be called a “Domain,” as the images from these cases 
could have different features for the model to identify and 
learn. Due to the lack of available data and time, the 
technique of domain adaptation has been used to achieve 
the maximum possible results in predicting the guardrails 
with less unlabeled data from any target domain. The 
presented model provides a binary classification (i.e., 
safe or unsafe) as an output for the guardrails detected. 
Evaluation metrics such as Precision, Recall and Mean 
Average Precision (mAP) are used to quantify the 
improvements in detection capabilities and choose the 
right model configuration. 

The rest of the paper is structured as follows. Section 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

855



2 provides a background on segmentation in the 
construction field. Section 3 presents the methodology 
used for this study. Section 4 uses a case study to 
illustrate the main elements of the methodology. Section 
5 summarizes key results from the case study and, finally, 
Section 6 includes the conclusions and future work. 

2. Background 

There have been many previous works on the usage 
of different methods and models for the detection of 
guardrails using data in the form of construction images, 
synthetic images, and point cloud data (from laser 
scanners or photogrammetry). 

Kolar et al. [5] used synthetic data for training a 
model with VGG16 as the feature extractor. The 
construction images with guardrails were used as the 
validation dataset, while augmented synthetic data was 
used for training the model. Their method had a 96.5% 
accuracy but failed in cases with low-light images of 
guardrails, which shows that the model would work 
poorly in domain change (i.e., changes in the physical 
conditions of the environment) situations. 

The lack of data available for training an effective and 
efficient Deep Learning model is challenging. The 
construction sector is widely diverse, with different types 
of visual features around the world, including different 
seasons and weather conditions. Each difference is a 
different domain of data, which presents an extra 
challenge to train Deep Learning models to work in all 
these different conditions. To overcome this, there is a 
need for a technique that could help to train a generalized 
Deep Learning model, to work in multiple domains and 
with low amounts of data by applying Transfer Learning. 
Ganin et al. [6] showed that domain adaptation could be 
used to learn Domain Invariant features, which could 
predict and segment objects across different domains 
with few or no labeled target domain data. Using the 
unlabeled target domain data in the training process is 
called “Unsupervised Domain Adaptation”. 

Li et al. [7] employed a Domain Adaptation 
Technique in combination with the YOLOv5 architecture 
[8], applying it separately to the source and target 
domains. In this approach, they used CSPDarknet-53 [9] 
as the feature extractor, which forms the backbone, neck, 
and head components of the YOLOv5 structure. In their 
study, a significant amount of source labeled data was 
used, along with small amounts of target labeled data, to 
train the YOLOv5 pipeline. Features from 3 different 
resolutions from the backbone of the source and target 
pipeline were used to calculate the transfer loss 
(Maximum Mean Loss). The transfer loss shows the 
distance between the features extracted by both the 
source and target data, which is added to the overall loss 
function as a regularization term. The drawback is that 
the sample target data that has been used for training has 
to be labeled, which is a labor-intensive task given the 

number of different domains. 
The performance of YOLOv8 on specific datasets [10] 

and its anchor-free detection technique that increases the 
model’s ability to detect objects of various shapes and 
sizes without the constraints imposed by predefined 
anchors has made it an ideal choice for our task. This 
work shows how the method of Unsupervised Domain 
Adaptation with backpropagation [6] can be used with a 
YOLOv8 [11] model to improve the detection and 
segmentation of objects with labeled source domain and 
unlabeled target domain datasets. 

3. Methodology 

The overall process used in this study is shown in 
Figure 1. It can be divided into two sections: (1) data 
collection and (2) data processing/model development. 
For the data collection, given a BIM of the environment, 
it is possible to extract a set of waypoints for an AGV to 
stop and collect data. While the AGV autonomously 
moves towards the waypoints, it can collect data with 
multiple sensors (i.e., an RGBD camera and a 360 
camera). This study focuses on data processing and 
model development. For more information about data 
collection, readers are referred to previous work by the 
authors (e.g., [12-14]). 

3.1 Data Pre-processing and Labeling 

To build a Deep Learning model, a set of training data 
needs to be used. Different labeling tools can be used for 
the collected data. 

3.1.1 Data Augmentation 

In the case when the amount of training data is not 
enough to ensure good results in the segmentation stage, 
data augmentation can be used to increase the size of the 
training dataset. Once the data has been labeled, various 
types of data augmentation are used during the training 
process, which greatly increases the chances for the 
model to explicitly learn the guardrail features. 

3.2 Build Deep Learning Model 

3.2.1 Deep Learning Network 

Deep-feedforward architectures have brought 
significant advances to state-of-the-art models across a 
wide variety of machine-learning tasks and applications. 

3.2.2 Deep Domain Adaptation 

A Deep Learning architecture trained on one to work 
for another domain with a shift in the distribution needs 
features that are common to both domains. Learning a 
label classifier in the presence of a shift between source 
and target distribution is known as domain adaptation. 
There are several methods to perform Domain 
Adaptation (DA). Here, we use DA by backpropagation.
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Build Deep Learning Model

Extract floorplan 
from BIM

Generate waypoint

Collect data as the robot 
moves (dynamic data 

collection)

Collect data at 
predetermined locations 

(static data collection)

No

BIM

Navigate area of interest 
in (semi)autonomous way

Accumulated data (3D 
point cloud, RGB-D, 

360 images, etc.)

Mission
completed?

Yes

Pre-process and 
label training data

Training data 
(source domain)

Classify collected 
data (e.g., as “safe” 

or “non-safe”)

Collected RGB 
images (target 

domain)

Data 
augmentation

Deep Learning 
Network

Deep Domain 
Adaptation

Satisfactory 
performance?

Modify network 
architecture / 
parameters

Yes

No

Figure 1: Main elements of the proposed methodology for data collection, processing, and model development.     
 

4. Case Study 

The proposed methodology has been tested on a 
condition with an abrupt change in elevation, 
representing conditions that could lead to fall hazards if 
proper protection was not in place during a construction 
project. The scenario used was a staircase on a university 
campus (Figure 2). A mock-up of a fall protection 
guardrail and an AGV equipped with different sensors 
were used to collect data.  

The outdoor experiment consisted of different case 
studies, considering all the possible cases that could be 
present in a real construction site. These cases consider 
the proper installation of the guardrail (with all the 
elements installed correctly), missing elements of the 
guardrail (i.e., missing mid and toe board), and the 
presence of clutter that could potentially be a trip hazard. 

  
(a) (b) 

Figure 2: (a) Overall view of the scenario used for 
the experimentation, and (b) view of the stairs 
representing the fall hazard. 

4.1 Fall Protection Guardrail Mock-up 

A wooden mock-up was built to resemble the most 
common safety guardrails typically used in construction 
sites as fall protection [15]. It was built according to the 
requirements specified by the Employer’s Liability 
Insurance Association for the Construction Industry in 
Germany (BG BAU) [16]. The mock-up consisted of a 

modular system with three vertical poles (1m height) 
with top, mid and toe boards (in total 6 horizontal boards 
of 20cm height and 1.5m width). An overview of the 
mock-up is shown in Figure 3. 

 

Figure 3: View of fall protection guardrail mock-
up developed and used for this study. 

4.2 Autonomous Ground Vehicle (AGV) 

The AGV used was a SUMMIT-XL platform by 
Robotnik Automation. The robot has holonomic 
locomotion (i.e., mecanum wheels). This allows the robot 
to move in all directions, providing a more accurate and 
reliable data collection in highly dynamic environments 
such as construction sites, where narrow passages are 
common. The AGV is shown in Figure 4, and a recording 
of the AGV collecting data can be watched in [17]. 

In terms of sensors for the data collection, the robot is 
equipped with a mid-range 3D scanner (BLK360) 
suitable for high-resolution dense point cloud acquisition, 
a long-range LiDAR (OUSTER OS1) suitable for low-
resolution point cloud acquisition used for the navigation, 
an RGB-D camera (Orbbec Astra) used to collect both 
RGB and depth information of the robot front view, and 
a 360 camera (GoPro MAX 360) aimed to collect extra 
RGB data surrounding the robot as it moves through the 
environment. Key characteristics of the different 
equipment used are summarized in Table 1. 
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Figure 4: AGV and related payload used. 

Table 1: Key specifications of the sensors used. 

Sensor Key specifications 
Leica Geosystems 
BLK360 
(Laser scanner) 

Accuracy: 6mm@10m 
Range: 60m 
Speed of capture: 360,000 pts/s 
FOV: 360ºH x 300ºV 

OUSTER OS1 
(LiDAR) 

Accuracy: 2.5cm@10m 
Range: 170m 
Speed of capture: 2,621,440 pts/s 
FOV: 360ºH x 45ºV 

Orbbec Astra 
(RGBD camera) 

Accuracy: 3mm@1m 
Range: 0.6m-8m 
Image resolution: 640x480 
@30fps 
FOV: 60°H x 49.5°V x 73°D 

GoPro MAX 
(Action camera) 

Image resolution: 4992 x 2496 x 
360º 

4.3 Conditions Evaluated 

4.3.1 Full Guardrail (Safe Condition) 

For this condition, the ideal scenario is tested. This 
means that the guardrail contains all the horizontal boards, 
fulfilling all the safety standards (Figure 5). 

  
(a) (b) 

Figure 5: (a) View of the mock-up placed on the 
stairs entrance, and (b) AGV collecting data. 

4.3.2 Missing Boards (Unsafe Condition) 

For this condition, multiple boards of the guardrail are 
missing. This reflects a potential fall hazard since the 
space between the top board and the floor is wide enough 
for a person to fall through (Figure 6). In addition, 
multiple objects (clutter) were added, presenting 

additional trip hazards that can potentially lead to a 
worker falling through the faulty installation. These 
elements also present occlusion for the Deep Learning 
detection algorithm, ensuring that the approach is tested 
under non-ideal conditions. 

  
(a) (b) 

Figure 6: (a) View of the scenario where the 
mock-up misses the mid and toe boards and has 
clutter on the floor, and (b) same condition with 
only vertical poles installed. 

4.4 Data Pre-processing and Labeling 

To train the Deep Learning model, RGB data was 
collected manually in an indoor environment with 
controlled lighting conditions (source domain). The 
training data was labeled using “Label Studio”, an open-
source data labeling tool [14]. For the specifics of a 
segmentation model, the labeled data needs to be in the 
form of masks (i.e., vertices of a polygon surrounding the 
segmented object). To further enhance the robustness and 
performance of the Deep Learning model under the 
dynamic conditions of the construction site, 
Unsupervised Deep Domain Adaptation is also used with 
indoor training images as the source domain and the 
outdoor collected images as the target domain. The target 
domain does not require any data processing or 
augmentation. 

4.4.1 Data Collection 

The data collected can be split into two categories: 
indoor and outdoor. To train the YOLOv8 network, a set 
of pictures of the fall protection guardrail taken in an 
indoor controlled environment was used. The source 
domain corresponds to the labeled training indoor data, 
and the target domain corresponds to the sample 
unlabeled data that needs to be classified. The scenarios 
were classified into safe (Figure 7 (a)) and unsafe (Figure 
7(b-d)). 

4.4.2 Source Data Collection 

A total of 56 images in the indoor setting were taken. 
The source images were split into training and validation 
images with a ratio of 3:1. The pictures were taken from 
different points of view and two sets of distances (Figure 
8) and different cases (i.e., all horizontal boards, only the 
top board, only the vertical poles, and with no guardrail) 
(Figure 7) to collect as many features as possible. 
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(a) (b) 

  
(c) (d) 

Figure 7: Source images used for training with 
guardrails: (a) full board, (b) top board and 
vertical poles, (c) poles only, and (d) none present. 

 

Figure 8: Setup for indoor data (images) collection. 

4.4.3 Target Data Collection 

The outdoor images, which correspond to the target 
domain, were collected with the AGV in different 
conditions. Examples of the collected data with the AGV 
are shown in Figure 9. 

4.4.4 Data Augmentation 

Since the amount of training data was not enough to 
train a robust object detection model, data augmentation 
was used to increase the training data tenfold. Continuous 
and random selection of various techniques of augmented 
data is used during the training of the Deep Learning 
segmentation model. The data augmentation techniques 
used in this study are summarized in Table 2. 

Table 2: Augmentation techniques used on the original 
training dataset. 

Type of augmentation Value 
Rotation [0-30] (+/- deg) 

Translation 0.1 (fraction) 
Scaling 0.5(+/- gain) 
Shear 0.5 (+/- deg) 

Flip left/right 0.5 (probability) 
Mosaic [0.1-0.9] (probability) 
Mix-up [0.1–0.9] (probability) 

 

   
(a) 

   
(b) 

   
(c) 

Figure 9: Target images: (a) Full board guardrail, 
(b) top board with and without clutter, and (c) only 
vertical poles, with and without clutter. 

4.5 Model Development (YOLOv8 Model) 

The main goal of this model is to classify images into 
safe and unsafe categories, as indicated in Section 4.3, by 
segmenting the presence (or lack of) and state (i.e., if all 
the components are present) of protection guardrails. For 
this study, we used YOLOv8 as the base model for the 
training, coupling it with other techniques, such as data 
augmentation and Unsupervised Deep Domain 
Adaptation (DA), to enhance guardrail detection in 
varying environments (i.e., indoor, outdoor, sunny, dark, 
etc.). We focus on DA using backpropagation. We use a 
feed-forward network or feature extractor to extract the 
domain invariant features and use them to train both the 
label classifier and Domain Adaptation Network. The 
label predictor uses the features to detect the guardrails 
and if it is a safe or unsafe condition. Whereas the domain 
classifier is used to predict whether the input belongs to 
the source or target domain. 

The YOLOv8 network can be built with different 
architecture configurations by modifying the amount and 
type of layers, and the different hyperparameters that 
affect the weights of the network. To properly choose the 
best architecture, several tests need to be performed to 
assess the performance of the network. The domain 
predictor uses the same features from the last layers of 
the network to predict whether the input belongs to the 
source or target domain. The domain predictor layer 
consists of the gradient reversal layer, which 
backpropagates the loss for the optimization of the 
weights of the network with a negative value. This makes 
the Domain Adaptation network and feature extractor 
(Deep Learning network backbone) oppose each other, 
making it possible to learn domain invariant features. 
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The weights of the underlying deep feature extractor 
(i.e., YOLOv8 network backbone) are optimized to 
minimize the loss of the label classifier and to maximize 
the loss of the domain classifier. The latter encourages 
domain-invariant features to emerge while training or 
optimization. The three different networks (namely the 
feature extractor, label predictor and domain classifier) 
can be embedded into a single deep feed-forward 
network using standard layers and loss functions and can 
be trained using standard backpropagation algorithm [6]. 
The crucial layer of this architecture for the task of 
domain adaptation is the gradient reversal layer, which 
leaves the input unchanged during forward propagation 
and reverses the gradient by multiplying it by a negative 
scalar (-1 × lambda) during backpropagation. 

To achieve the best possible results, different 
characteristics of the YOLOv8 model architecture, target 
data, and changes in hyperparameters, such as lambda in 
the Gradient Reversal layer, needed to be fine-tuned.  

A summary of the different tested models and their 
corresponding results can be seen in Table 3 and Figure 
10, respectively. The results include metrics: Precision, 
Recall, and Mean Average Precision (mAP) for the 
segmented guardrails in the images. These metrics show 
how well the model identifies the different configurations 
of guardrail elements in the images. 

As seen in Figure 10, the results from training the 
YOLOv8 only with the source images with and without 
augmentation (Model#1 and Model #2) are not good on 
the validation Target data. The training “Model #3” with 
only 1 layer Domain Adaptation Layer (P5) performs 
poorer than the previous training as it was given only 
very few variations in Target data for training. The 
training of “Model #4” (same as “Model #3” but with 
more variation in target data for training) performs much 
better than “Model #3”. This shows that even though the 
Target data are fed into training without the ground truth 
labels, the model can learn more Target domain features 
with the Domain Adaptation Network. The best model 
training was achieved with “Model 5,” built with 3-
Layers of DAN with features from P3, P4, P5 and more 
variation in the Target Training Data. “Model #6” is the 
same as “Model #5” except for the value of lambda for 
the Gradient reversal layer. “Model #5” was trained with 
lambda 1, and “Model #6” was trained with lambda 5, 
which has obtained slightly poor results. This shows that 
“Model #6” with lambda 5 punishes the rest of the model 
more to predict the correct domain class during 
backpropagation and yields worst results on label 
prediction. Hence, a better value of lambda for this 
training is 1, as it punishes the model the right amount 
during training. 

Table 3: Training Model description and parameters. 

Model Details 

#1 
Training only source images without Data 

Augmentation 

#2 
Training only source images with Data 

Augmentation 

#3 
Training with source images and fewer target 

images and only the P5 DAN layer 

#4 
Training with source images and more target 

images and only the P5 DAN layer 

#5 
Training with source images and more target 

images and P3, P4, P5 DAN layers and 
lambda=1 

#6 
Training with source images and more target 

images and P3, P4, P5 DAN layers and 
lambda=5 

 

Figure 10: Results for different metrics of each 
model. 

The selected YOLOv8-m architecture is configured 
with varying channel sizes for the P3, P4, and P5 layers, 
specifically 192, 384, and 576 channels, respectively. 
This configuration is dependent on the type of YOLOv8 
variant used, which includes n, s, m, l, x models. In this 
architecture, the extracted features from the training 
phase are employed by the up-sampling process in the 
YOLOv8 head. This up-sampling is crucial for 
reconstructing the image back to its original size, and it 
is particularly instrumental in the segmentation tasks, 
where maintaining image resolution and detail is 
essential. The overall network structure, with the 
YOLOv8 classifier network and the Domain Adaptation, 
can be seen in Figure 11. 
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Figure 11: YOLOv8 with domain adaptation network for selected model (Model #5). 

5. Results 

5.1 Classification Results 

The results show that Model #5, with a 3-layer 
Domain Adaptation Network, has achieved the highest 
accuracy on the validation target data. The values for 
the evaluation metrics for Model #5 are summarized in 
Table 4, and representative results to classify the target 
images are shown in Figure 12. 

Table 4. Evaluation metrics for Model #5. 

Precision Recall mAP50 mAP50-95 
0.947 0.868 0.909 0.818 

 

Figure 12: Validation results of Model #5. 

The Confusion matrix (Figure 13) shows that 
Model #5 performs well in identifying the ‘Unsafe’ 
class with a high number of true positives (14). This 
indicates that the model is effective at detecting 
‘Unsafe’ scenarios. There are no instances where ‘Safe’ 
is confused with ‘Unsafe’ or vice versa, which is 
positive as it suggests that the model can distinguish 
between these two classes effectively. 

Overall, it can be said that the model has a high 
precision for the ‘Unsafe’ class since there is only one 
false positive; however, its recall is affected by the five 
false negatives. The presence of false negatives for 
‘Unsafe’ (5 instances misclassified as ‘Background’) 

suggests that there may be room for improvement in 
distinguishing between ‘Unsafe’ and ‘Background’. 
This could be attributed to the debris occluding the 
view, dark shadows, or being far from the camera, 
which is acceptable as the model has not been trained 
enough for such harsh cases. This could be improved 
in the future by training with more diverse and harsher 
data so the model learns more features. 

 

Figure 13: Confusion matrix of Model #5. 

5.2 Failed cases 

The guardrail detection by the best model is not 
always accurate. The failed cases, as shown in Figure 
14, either have some debris lying in front of the 
guardrails, the guardrails are at a far distance, or the 
guardrails are too close and partially captured in the 
images. These are reasonable failed cases since the 
training data had no such cases and was not the 
objective of this work. The guardrails prediction with 
the AGV was designated to work with the guardrails 
being at a reasonable distance (i.e., from 2 meters to 4 
meters) as can be seen in Figure 8, showing the setup 
for indoor data collection. Therefore, the failed cases 
in the target images with guardrails at distances less 
than 2 meters or more than 4 meters are understandable. 
In addition, the training data did not contain guardrails 
with debris lying in front of them. In future work, we 
will solve these shortcomings with more data, 
capturing all these situations and using depth 
information to overcome these. 
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Figure 14: Failed predictions by Model #5. 

6. Conclusion and Future Work 

From this work, we have achieved detection and 
segmentation of guardrails with YOLOv8 trained on 
source domain (i.e., indoor training data) and predicted 
on target domain (i.e., outdoor collected data) using 
Domain Adaptation with Backpropagation. This 
indicates that the model, needing fewer target domain 
images, can be used for guardrail detection across 
different domains without having to label the ground 
truth for each one of the images. 

The model had some limitations that could be 
overcome by using images from failed cases in the 
target data during training, allowing the model to learn 
extra features. The significance of the unlabeled target 
training data is crucial, as it determines the 
performance of the model prediction on the target 
domain. The same method, along with transfer 
learning, can be effectively used to retrain the model 
repeatedly onto different domains with less unlabeled 
training data. This can save a significant amount of 
time while not sacrificing performance. 

Some challenges faced by a vision-based approach 
can be overcome by adapting the same techniques to 
RGB-D images or by using point cloud data. The use 
of depth information might lead to better results. 
Another future aspect of this work lies in the real-time 
use of safety information to deploy predictive models 
in an online Digital Twin. Further work can also target 
alternative data collection and inspection methods, for 
example, unmanned aerial vehicles [18] for tailored 
human-assisted safety management software [19]. 
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