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Abstract 

Digital Twins have emerged as a transformative 

solution enabling organizations across sectors to 

digitally replicate physical assets and processes to 

extract operational insights. Implementing Digital 

Twin systems involves diverse stakeholders, ranging 

from providers to end-user developers and adopters. 

At the crux of Digital Twin implementation lies the 

need of Digital Twin platform – the foundational 

infrastructure on which solutions are built, 

integrations are executed, and data flows are 

managed. While substantial research targets 

advancing Digital Twin platforms’ capabilities, 

investigations analyzing real-world implementations 

spanning industries remain scarce. This research 

profiles 19 platforms harnessing data aggregated 

from provider websites, white papers, press releases 

and user documentation to compile understanding on 

platform purpose, inbuilt security and interaction 

mechanisms, integration architectures, predominant 

use cases, real users’ locations, and supported 

solutions. Social Network Analysis (SNA) conducted 

in Pajek detected valuable adoption patterns in the 

Digital Twin platforms market while community 

identification analysis linked predominant platform-

capability combinations to industry and locational 

preferences, arming stakeholders to strategize road 

mapping. Results showed that Azure Cloud, IBM 

Cloud, and MindSphere were ranked highest in 

centrality among the platforms mapped. In parallel, 

to determine platform capability dimensions and 

their acceptance across geographies and use contexts, 

normalized centrality metrics were performed for 

other data types. Also, 58 solutions provided by 

platforms were classified into five categorical purpose 

groupings. The findings expand visibility into the 

dynamics of Digital Twin platforms and can be 

evolved by expanding sample diversity and blending 

functional, operational, and economic perspectives in 

future studies supporting stakeholders in 

implementation processes. 
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1 Introduction 

In the rapidly evolving landscape of digital 

transformation, organizations worldwide are increasingly 

turning to innovative solutions to enhance efficiency, 

streamline operations, and gain a competitive edge [1]. 

Among these, Digital Twins have emerged as a 

transformative force, revolutionizing the way industries 

approach data, simulation, and real-world processes. As 

the significance of digitalization continues to grow, the 

adoption of Digital Twins has become not only a strategic 

imperative but also a key driver in reshaping industries 

and fostering unparalleled advancements in technology 

[2]. Digital Twin provides the means to depict, emulate, 

forecast, optimize, and control physical space through 

real-time connectivity, mapping, analysis, and 

interaction with a specific fidelity and frequency [3]. This 

communication between the physical and virtual systems 

is enabled by explicitly defining the data produced by the 

system, augmenting it with information about system 

entities, and realizing “value adding services” on top of 

this data driven definition [4]. Core components of 

Digital Twin technology include high fidelity data 

collection via Internet of Things (IoT), sensors, 

predictive data analytics and process simulations to 

create the model, as well as visualization dashboards to 

provide services for users [5]. With the advantages of 

model, data, and service, Digital Twin offers superior 

solutions for enhancing quality, increasing efficiency, 

cutting costs, mitigating losses, ensuring safety, and 

conserving energy [6]. Therefore, Digital Twin enables 

maximum optimization of processes and value chains of 

the physical system. Moreover, the application of Digital 

Twin in diverse industries can effectively expedite their 

digitalization, networking, and intelligence development 

processes. 

As the adoption of Digital Twin increases across 

sectors such as manufacturing, healthcare, automotive, 
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construction, and urban development, dedicated software 

platforms have emerged to facilitate the Digital Twin 

development and scalability of Digital Twin [7]. A 

Digital Twin platform provides the core infrastructure to 

enable the creation, management, and utilization of 

Digital Twins across an organization's ecosystem while 

establishing the digital thread that connects the physical 

and virtual worlds [8]. According to [9], Digital twin 

platform ecosystem refers to collaborative environment 

involving Digital Twin platform providers, application 

developers, technology providers, system integrators, 

consultants, and user organizations for enabling digital 

transformation across industry verticals. The key 

capabilities of a Digital Twin platform include data 

ingestion and integration, simulation engine, 

visualization dashboards, analytics, reporting and 

notifications, collaboration tools, Application 

Programming Interfaces (APIs) and integration 

capabilities, security features, and scalability [10], [11]. 

Digital Twin platforms empower organizations to unlock 

key benefits, including predictive maintenance, 

improved asset performance, and accelerated innovation 

[12]. Prominent examples of Digital Twin platform 

include Microsoft Azure Digital 1Twins, GE's Predix, 

Siemens MindSphere, PTC's ThingWorx, Dassault 

Systemes' 3DEXPERIENCE, and Ansys Twin Builder. 

While these platforms are applicable across various 

industries, companies often opt for customized solutions 

based on Digital Twin platforms, avoiding a one-size-

fits-all approach. Despite numerous investigations into 

developing Digital Twin platforms in recent years, there 

is a gap in gathering, categorizing, and analyzing the 

existing platforms provided by developer companies. An 

analysis of the implementation of existing Digital Twin 

platforms in different industries, along with their 

definitions, purposes, solutions, and other aspects is 

needed. 

 This paper aims to assist the evolving landscape of 

Digital Twin platforms and ecosystem partners dedicated 

to delivering asset-class or industry-specific Digital Twin 

solutions. This objective is accomplished by applying 

Social Network Analysis (SNA) techniques to model and 

interpret the relationships between various Digital Twin 

ecosystem participants on a global scale. Additionally, 

existing Digital Twin platforms are analyzed with respect 

to their functional and geographic concentration of 

interconnected providers and user communities. 

2 Background 

 Digital Twins have gained traction in recent years 

across various industries, including manufacturing, 

aviation, healthcare, construction, and smart cities. 

Recent surveys on industry adoption levels indicate that 

manufacturing has taken an early lead in implementing 

Digital Twin prototypes and applications [13]. Although 

adoption levels vary across industries and applications, 

the common thread involves leveraging connected IoT 

devices, predictive analytics, and simulations through 

Digital Twin platforms. This is accomplished by utilizing 

core features such as physics-based equipment modeling, 

real-time data integration via IoT APIs, Artificial 

Intelligence (AI)-powered analytics, monitoring 

dashboards, and simulation tools [14]. Several studies 

have been conducted to develop Digital Twin platforms 

to address specific problems in different industries. In the 

manufacturing sector, [15] developed a Digital Twin for 

steel pipe weld quality control. A Digital Twin platform 

based on a microservices architecture and offering 

solutions for continuous deployment, data infrastructure 

and I4.0 business services was developed by [16]. [17] 

developed an AI-based injection molding machine 

Digital Twin able to prevent failures by recognizing 

machine deterioration patterns. [18] established a Digital 

Twin platform for the medical device assembly machine 

to diagnose the anomalies’ root causes and predict the 

quality of the products with more confidence, higher 

speed, and less invasive methods. 

While manufacturing leads in piloting Digital Twin 

platforms, momentum also exists in other sectors such as 

construction and smart cities. [19] developed a cyber-

physical interconnection method for computational 

design and robotic construction in a wooden architectural 

realm. [20] employed Digital Twin within a human-robot 

collaborative system to assist in assembling complex-

shaped architectures and tested it through a real system. 

[21] created a  Digital Twin-enabled anomaly detection 

system for asset monitoring and with a data integration 

method based on extended Industry Foundation Classes 

(IFC) in daily Operation and Maintenance (O&M) 

management, which was successfully tested on a real 

case. [22] proposed a Digital Twin-enabled real-time 

synchronization system (DT-SYNC) aiming to facilitate 

Planning, Scheduling, and Execution (PSE) using real-

time resource status and construction progress 

information obtained from high-fidelity Digital Twins. 

[23] introduced a digital-twin based multi-information 

intelligent early warning and safety management 

platform to address high safety risks during tunnel 

construction. [24] developed a blockchain-enabled 

Digital Twin collaboration platform for Modular 

Integrated Construction (MiC) fit-out operations for 

modular construction. [25] proposed a geospatial 

platform based on the universal game engine Unity3D, to 

manage large-scale individual mobility data for an Urban 

Digital Twin (UDT) platform. [26] proposed a Digital 

Twin platform to address challenges in incorporating 

Photovoltaic (PV) systems and wind energy sources into 

smart city power grids. [27] presented the design, 

implementation, and use cases of the Chattanooga Digital 
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Twin (CTwin) toward the vision for next-generation 

smart city applications for urban mobility management.. 

[28] presented an overview of different Digital Twin 

platforms that can be used in Electric Vehicle (EV) 

applications in smart cities. 

Healthcare is also poised for Digital Twin adoption 

through "Digital Hospital" initiatives utilizing AI and 

simulation to optimize patient flow, resource allocation, 

and medical equipment maintenance [29]. [30] built a  

Digital Twin body through dynamic equations and 

pressure control mechanisms based on pressure reflexes. 

[31] built a  Digital Twin coupled with blood flow and 

head vibration to develop diagnostic tools. Subramanian 

(2020) built a  Digital Twin that integrated scientific 

information and clinical source information. [33] 

constructed a Digital Twin of lumbar spine based on AR, 

data analytics, motion capture system, Inverse Kinematic 

(IK) method and Finite Element Method (FEM). [34] 

developed a Digital Twin system for the vaccination 

process and tested it in a clinic. [35] built an emergency 

department Digital Twin simulation able to quantify the 

downstream impact of delayed or erroneous triage on 

patient outcomes.  [36] developed a patient centric 

mathematical data model to formally define the semantic 

and scope of our proposed Healthcare Digital Twin (HDT) 

system based on Blockchain.On the other hand, there 

have been studies attempting to define the core 

infrastructure, tools, and capabilities of platforms to 

develop Digital Twins. As defined by[37], Digital Twin 

platforms aim to provide the technical foundation for 

virtual modeling, data orchestration, and digital thread 

management required in Digital  Twin  initiatives.  

Multiple  conceptual  reference models exist, detailing 

potential components of Digital Twin platforms covering 

aspects such as physical counterparts, virtual models, 

connectivity, intelligence, and visualization, among 

others. [5], [38]. 

While logical representations are instructive, 

surveys of commercial platforms reveal differing 

priorities and configurations of key elements such as 

digital shadow maintenance, analytics engines, 

simulation services and front-end apps [11]. In addition, 

studies have identified several common Digital Twin 

platform capabilities. [39] discussed key services 

required in Digital Twin enabled smart manufacturing, 

including sensing, data analysis, modeling, simulation, 

and visualization. [5] reviewed core concepts and 

technologies behind Digital Twins, including system 

integration, simulation, machine learning, visualization 

and   deep   learning.   [40]   summarized   developmental 

components of Digital Twins into four parts: Digital 

Twin modeling and simulation, data fusion, interaction, 

and service. Required features for Digital Twins such as 

interconnection, simulation models, data collection, and 

visualization were discussed by [41]. [38] and [42] 

reviewed Digital Twin capabilities which are defined and 

summarized in Figure1. While substantial research 

activity exists around conceptual Digital Twin platforms, 

architectures, and capability frameworks, a gap persists 

in empirical documentation   and evaluation of specific 

platforms developed and deployed across industries. For 

all the prototyping and technical specification efforts, a 

systematic    investigation    into    platforms    supporting 

operational Digital Twin initiatives remains lacking. This 

limitation  not  only  hampers  the  benchmarking  of  the  

 
 

 
 

Figure 1 . Digital Twin platform capabilities 
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expansion of Digital Twin platforms adoption and 

deployment but also impedes the identification of 

obstacles and milestones crucial for guiding investment 

decisions. Asset owners, lacking evidence of platform 

viability and modernization pathways, face challenges in 

making informed trade-off decisions. 

3 Data Overview 

The Digital Twin platform dataset underpinning this 

research was compiled by drawing from secondary 

platform sources, press announcements, and providers’ 

and users’ websites. Structured information was captured 

for 18 unique Digital Twin platforms located in six 

different countries, covering details on the platform’s 

launch year, core capabilities such as built-in security 

mechanisms and twin interaction methods, target use 

case, and roster of 58 solutions leveraging these 

platforms. Additionally, user community details were 

gathered related to leading industries and functional 

applications where available. Table 1 summarizes the 

findings and their definitions- the full data is available 

and will be provided upon request. 

The dataset provides reasonable coverage across 

industry segments investing in Digital Twin, with over  

40 industry segments identified including manufacturing, 

energy, healthcare, automotive, and construction. These 

major segments are located in 19 different countries. It is 

important to note that the depth of details on solutions 

varies considerably based on how much detail each 

provider or user provides for the solution they are using. 

 

Table 1. Dataset summary 

Data Attributes Definition 

Platform provider 
Owner name and headquarter 

location 

Launch year 
Year when platform first 

released 

Platform purpose 
Primary functions and digital 

twin focus areas 

Platform integration 

method 
Integration classification 

Twin interaction 

methods 

IoT connectivity and data 

ingestion protocols 

Security 

mechanisms 

Data and processes security 

protocols and mechanisms 

Platform users 
Industries that the platform 

can be deployed 

Current users’ 

location 

Countries that are using each 

platform 

Digital Twin 

platform’s Solutions 

Names and descriptions of 

developed solutions 

Solution focus Solutions’ purposes 

4 Analysis and Discussion 

Social Network Analysis (SNA) was employed to 

analyze the dataset using Pajek software. In this analysis, 

Digital Twin platforms, users’ industry, security 

mechanism, twin interaction method, and users’ location 

are modeled as nodes with edges defined based on stated 

collaborations, integrations, and deployments. Both 

visual and quantitative SNA techniques are applied to 

identify key patterns. 

SNA yielded several insightful observations 

regarding the current state and trajectory of the Digital 

Twin ecosystem. As depicted in Figure 2 and indicated 

by Degree of Centrality (DoC) rankings, a select few 

platforms have emerged as most influential in shaping 

today's deployments. Azure Cloud (DoC: 18), IBM 

Cloud (DoC: 18), MindSphere (DoC: 17), and Vuforia 

(DoC: 17) are identified as the top platforms, 

experiencing significant most adoption across various 

industry verticals. The dominance of these mainstream 

platforms aligns with the finding that cloud-based (DoC: 

8) and hybrid (DoC: 6) integration methods now prevail 

in how Digital Twin solutions leverage platforms.  

Additionally, the SNA results identified key security 

and twin interaction mechanisms that are central to 

Digital Twin platforms. Authorization (DoC: 18), 

authentication (DoC: 14),  and encryption (DoC: 10) 

emerged as the most common security mechanisms, 

while service APIs (DoC: 15), bidirectional 

synchronization (DoC: 13), and interface simulation 

(DoC: 13) lead in enabling integration and 

communication with physical assets. The widespread use 

of these platform-enabled capabilities emphasizes their 

significance in ensuring the usability and security of 

Digital Twin platforms. However, the network topology 

also revealed gaps in the adoption of these leading 

practices, particularly among Asian user organizations. 

Providing more implementation guidance and sharing 

best practice could accelerate the assimilation of platform 

services in these regions. 

Moreover, examining the industry and geographic 

distribution of Digital Twin platform adoption adds value 

by identifying demand patterns. Manufacturing (DoC: 

10), automotive (DoC: 8), energy (DoC: 7), and 

construction (DoC: 5) industries emerged as leading 

segments actively leveraging Digital Twin platforms. 

Furthermore, and as depicted in figure 3, the community 

detection analysis provides particularly useful insights 

into industry and location combinations that tend to 

utilize specific platform and mechanism combinations. 

For instance, MindSphere platform with Authorization 

and secured protocols, paired with Hybrid integration 

method, see adoption in construction and agriculture use 

cases across USA and Germany. These patterns suggest 

that specific platform configurations meet the needs of 

these industries and locations. 
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Figure 2. SNA results 

 

 
 

Figure 3. Community identification analysis 

 

Finally, the temporal social network analysis 

indicated that the development and implementation of 

Digital Twin platforms have entered a phase of rapid 

growth and acceleration over the past three years. The 

increasing rate of participation across both supply and 

demand sides of the market signals the crossing of a 

tipping point. Digital Twin providers are developing 

various solutions with specific purposes, moving beyond 

isolated proofs of concept into scaling adoption across 

industries. The analysis of the range of solutions 

associated with major Digital Twin platforms revealed 

that the purpose of these solutions largely falls into five 

key categories: 1) detailed virtual modeling, 2) 

simulation and predictive analysis, 3) connectivity and 
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data integration, 4) immersive interaction, and 5) 

lifecycle and change management. For example, 

solutions like CATIA, Creo, NX, OpenBuildings, and 

Unified Engineering provide sophisticated CAD and 

engineering environments to model highly accurate 

Digital Twin representations. Complementary simulation 

tools like SIMULIA, Discovery Live, Plant Simulation, 

and Twin Builder enable predicting real-world 

performance through digital prototypes. Solutions 

including IoT Hub, Watson IoT, and C3 IoT focus 

specifically on ingesting and managing streams of data 

from physical assets. Augmented and virtual reality 

solutions provide new ways of immersive interacting 

with Digital Twins on-site or remotely. Furthermore, 

solutions like Windchill, Teamcenter, and iModelhub 

help manage Digital Twin data and relationships 

throughout ongoing change. 

While most platforms provide an integrated set of 

solutions spanning the five main areas, the analysis 

reveals some differentiation and specialization as well. 

For example, the ANSYS Digital Twin platform 

emphasizes simulation-centric solutions for digital 

mission engineering across complex systems. Autodesk 

brings generative design paired with construction site 

data flows. Azure offers cloud-native capabilities for 

scalable Digital Twin data and lifecycle management. 

Also, augmented reality leaders like Vuforia integrate 

immersive Digital Twin experiences as a key solution 

area. Observing these patterns provides perspective on 

the expanding functionality Digital Twin platforms now 

offer as enablers, spanning detailed modeling to 

operational connectivity to simulation-driven insights 

and beyond. Additionally, while Digital Twin platforms 

host an expanding roster of twin-enabled solutions, the 

depth of solution details wildly varies. Identifying use 

case patterns to determine which solutions best match the 

purpose will accelerate the large-scale adoption and 

implementation. 

5 Conclusion 

Numerous Digital Twin platforms, each designed for 

specific purposes, have been developed by providers 

globally. The comprehensive information gathered on 

these platforms and analyzed through SNA offers 

valuable insights into the current status, intentions, 

capabilities, and associated solutions of these platforms 

summarized as below: 

• Platforms: SNA’s analysis revealed that among these 

robust platforms, Azure Cloud, IBM Cloud, and 

MindSphere exhibit the highest centrality.  

• Platform users’ industry: When examining user 

industries across all platforms, Manufacturing 

emerged as the most prominent, followed by 

Automotive, Aerospace, and Marine, with Logistics 

and Agriculture being the least common industries.  

• Platform users’ location: In terms of geographic 

distribution of users, the USA takes the lead, followed 

by European countries, while Asian countries having 

the least widespread adoption.  

• Security mechanisms: According to the SNA, 

Authentication, Authorization and Encryption 

represented the most widely implemented security 

mechanisms, whereas Data Masking, Secured 

Protocol, and Trusted Hardware ranked as less 

common.  

• Twin interaction methods: As a crucial capability of 

Digital Twin platforms, Service APIs were the 

predominant method of twin interaction, whereas 

Twin-to-Twin approaches ranked as the least used.  

• Integration methods: Regarding integration 

methods, Cloud-Based platforms were deemed the 

most probable, with combinations of On-Premise 

with Hybrid, as well as On-Premise with Cloud-

Based, ranking as the least probable. 

Additionally, within such analyses, the identification 

of communities in the established relationship network 

can offer valuable insights. Community detection 

revealed groupings that include at least one node of each 

type: platforms, security mechanisms, interaction 

techniques, integration approaches, probable industry 

adopters and locational distribution. Mapping these 

associations highlights the most relevant combinations of 

platform capabilities for specific industry applications 

and geographies. This community perspective informs 

strategic decisions in selecting appropriate platforms 

capabilities for given use case requirements. Moreover, 

individual platforms offer differentiated solutions that 

serve distinct purposes, grouped into five categories: 

detailed virtual modeling, simulation and predictive 

analytics, physical-to-digital connectivity and data 

integration, immersive interaction modes, and lifecycle 

and change management. This research also confirms 

accelerated growth and maturation within the Digital 

Twin platform landscape over the past three years. 

Despite limitations such as potential geographical 

bias toward platform providers and constraints related to 

documentation availability, the current analysis expands 

visibility into the dynamics of the Digital Twin platform 

ecosystem. Moving forward, several facets warrant 

deeper investigation in future research. For instance, 

expanding sample diversity and analyzing fringe use 

cases in terms of industry vertical and regional adoption 

to spotlight capability gaps restricting implementation. 

Longitudinal monitoring of advancing functionality 

across simulation fidelity, automation sophistication and 

cloud orchestration flexibility would reveal comparative 

platform suitability rates. Finally, incorporating financial 

partnership ties and usage data can provide tangible 

indicators of real-world sustainability alongside technical 
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capability. By blending functional, operational, and 

economic perspectives, evolving social network 

modeling and simulation techniques will empower 

stakeholders to chart technology maturation, predict 

partnership risks, and plan implementation timelines as 

industrial Digital Twins progress toward mainstream 

viability. 
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