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Abstract 

Regular inspections, effective management, and 
timely maintenance are critical issues to ensure 
bridge safety and quality. Currently, visual inspection 
remains the predominant method employed 
worldwide for bridge inspection. However, visual 
inspection heavily relies on the training, experience, 
and subjective judgment of inspectors, leading to 
inconsistent assessments. When applying deep 
learning techniques to assist in identifying bridge 
crack formations, challenges persist. Some images 
may not clearly display the crack's location. Infrared 
thermography, with its non-contact, non-destructive 
properties, effectively detects surface delamination in 
concrete bridges. However, most research employs 
higher-spec infrared thermography, which comes 
with higher instrument costs and less economic 
viability. Hence, this study aims to investigate the 
feasibility of using lower-spec infrared thermography 
to detect surface delamination in concrete bridges as 
well as analyze the potential of using lower-spec 
infrared thermography results to assist AI image 
recognition of bridge surface defects. 
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1 Introduction 
Regular inspections, effective management, and 

timely maintenance are critical issues to ensure bridge 
safety and quality. Currently, visual inspection remains 
the predominant method employed worldwide for bridge 
inspection. However, visual inspection heavily relies on 
the training, experience, and subjective judgment of 
inspectors, leading to inconsistent assessments. 

As for the literature review related to this research 
objectives, Yahui Liu et al. (2019)[1] propose a deep 
hierarchical convolutional neural network (CNN) to 
detect the concrete crack without using thermal imaging 
cameras. Chia-Chi Cheng et al. (2008) [2] use infrared 

thermography associated with elastic waves to detect 
concrete structure defects in the lab. Using this elastic 
waves in the lab maybe not suitable for this research 
utilizing to the bridge. This study utilizes the test method 
modified from ASTM [3]  to detect cracks in concrete 
using infrared thermography. Rocha and Povoas 
(2017)[4] just review the state of the art using infrared 
thermography to inspect the concrete bridges. However, 
the infrared instruments used in these literature [3,4] are 
too heavy and large to be employed on unmanned aerial 
vehicles (UAV). For next further research objectives, it 
will be utilized a lighter and smaller infrared instrument 
to employ the defect detection with UAV. Nevertheless, 
there is still a significant challenge to overcome AI image 
recognition. Previous literature has highlighted the 
effectiveness of thermal imaging cameras in detecting 
concrete bridge surface spalling. Currently, this study 
first aims to investigate the feasibility of employing low-
standard infrared thermal imaging cameras (lighter and 
smaller) to detect concrete bridge surface spalling and 
support AI image recognition technology in bridge 
inspections. In the further research, this lighter and 
smaller infrared instrument can be easily to be employed 
to the defect detection with UAV. 

Based on laboratory research and on-site inspections 
of bridges, the FLIR E5 infrared thermal imaging camera 
has demonstrated the recommended measurement 
distance of 1 to 2 meters. While it may not be suitable for 
measuring shallow-depth and small-area defects, it 
excels in effectively detecting various shapes of spalling 
and supporting AI image recognition. Consequently, 
employing low-standard infrared thermal imaging 
cameras for the detection of concrete bridge surface 
spalling and integration with AI image recognition 
technology in bridge inspections appears to be a feasible 
approach. 

2 Methodology 

2.1 Research Procedure 
This research first comprehends the background of 

bridge inspection and infrared inspection in Taiwan. It 
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describes the research motivations, objectives, scope, and 
limitations, followed by a literature review that gathers 
relevant domestic and international studies along with 
pertinent theories. After the literature review, laboratory 
experiments and on-site bridge inspections will be 
conducted. In the laboratory experiments, dimensions of 
test specimens and defect sizes will be determined based 
on multiple domestic and international studies. Test 
specimens will be created according to the actual 
composition of Taiwanese concrete bridges (designed 
strength of 350 kgf/cm²). The entire process of specimen 
creation, including template assembly, material 
preparation, mixing, defect model creation, grouting, and 
final curing, will be executed independently. During the 
first phase of experiments, equipment suitability (FLIR 
E5, shown in Figure 1 and 2)) for measurement 
dimensions and distances will be determined based on the 
analysis results. The second phase will primarily explore 
whether defects of different shapes can be detected 
similarly. The third phase will involve redesigning and 
creating new specimens, conducting thermal imaging 
analysis to assist Deepcrack AI image recognition, and 
drawing final conclusions. In the bridge inspections, 
identical measurement and analysis methods will be 
employed to derive conclusive results. 

 
Figure 1. FLIR tools/tools+ software screenshot 

 
Figure 2. FLIR tools/tools+ Software editing model 

2.2 Bridge Crack Inspection Experiments 
2.2.1 First-Phase of Experiment 

The concrete specimens in this study will be 
fabricated to match the actual design strength of 
Taiwanese concrete bridges, which is 350 kgf/cm². The 
dimensions of the concrete specimens will be 60×70×10 
cm³, with the defective portions made using perlite 

boards whose sizes vary according to the experimental 
phases. The concrete mix will have a water-cement ratio 
of 0.55, requiring 18.9 kg of cement, 11.1119 kg of water, 
29.8918 kg of mainland sand, and 41.2113 kg of coarse 
aggregates. 

Passive infrared thermography will be utilized in this 
phase of experiments. The prepared specimens will be 
laid flat in an area devoid of shadows and exposed to 
direct sunlight. When capturing images, the concrete 
specimens will be positioned upright, and the FLIR E5 
infrared camera will conduct two sets of captures every 
half hour. Each set will encompass five measurement 
distances (1m, 2m, 3m, 4m, 5m). Image capture sessions 
are scheduled from 11:00 a.m. to 2:00 p.m. and from 7:00 
p.m. to 9:30 p.m. A distance meter, UNI-T LM80, will 
ensure the infrared camera is perpendicular to the 
specimen, and an infrared thermometer, TECPEL-
DIT300B, will measure the surface temperature of the 
specimen. 

2.2.2 Second and Third-Phase Experiments 

In this phase of the experiment, passive infrared 
thermography will be employed, and the fabricated 
specimens will be laid flat in an area without shadows 
and exposed directly to sunlight. During the capture 
process, the operator will stand on an A-frame ladder and 
utilize the FLIR E5 infrared camera to capture images in 
sets every half hour. Each set will involve two 
measurement distances (1m, 2m), and the image capture 
sessions will occur from 3:00 p.m. to 5:00 p.m. A 
distance meter, UNI-T LM80, will ensure the infrared 
camera is perpendicular to the specimen, and an infrared 
thermometer, TECPEL-DIT300B, will measure the 
surface temperature of the specimen. 

2.3 Data Collections 
The temperature data acquisition through thermal 

imaging will be performed using FLIR tools to obtain the 
average temperature of the defect (T_i) and the average 
temperature around the defect (T_S). The steps are as 
follows: 

(1) Import the desired image into FLIR tools (using 
defect number 1 for demonstration purposes). 
Double-click to open the image and enter the 
operating interface. Switch the image mode to 
digital thermal camera (visible light image). 

(2) In the visible light image within the digital 
thermal camera mode, use the temperature 
measurement function to select the area of the 
defect for measurement. This action will yield 
the average temperature of the defect. For 
demonstration purposes using defect number 1 
from the first set of specimens (refer to Figure 3), 
the average temperature (T_1) of defect number 
1 (Bx1) is measured to be 42.5°C. 
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Figure 3.  Example of selecting defect temperature 

value in the visible light image 

 

1. The selected area on the defect measures 40×40 
(Figure 4) in pixels, representing 1600 temperature 
values within the selected area. When comparing 
the 40×40 (pixels) area to the actual defect size of 
10×10 (cm²), there exists a 4:1 ratio. Therefore, in 
this study, the perimeter of the defect is 
extrapolated to 3 centimetres from the defect 
distribution (Figure 5), meaning the real size is 
16×16 (cm²). FLIR tools utilize a size of 64×64 
(pixels). In this example, after the selection process, 
the overall average temperature (T_A) within the 
64×64 (pixels) area is measured at 41.9°C (marked 
as Bx2 in Figure 5). 

 
Figure 4. Diagram illustrating defect selection in 

digital thermal camera mage mode 

 
Figure 5. Diagram illustrating selection in infrared 

imaging mode 
2. However, the overall average temperature value 

(𝑇!) within the selected 64×64 (pixels) area in Step 
3 includes the temperature of the defect itself. To 
obtain the defect's surrounding average temperature 
(𝑇#)required for this study, this temperature should 
be deducted. Therefore, by employing the following 
formula: 

𝑇$ =
𝑇! × 𝐴% −∑ 𝑇& × 𝐴&'

&()

𝐴% −∑ 𝐴&'
&()

 
(1) 

𝑇$ : Defect surrounding average temperature 

𝑇! : Overall average temperature 

𝑇& : Defect average temperature 

𝐴% : Total area 

𝐴& : Defect area 

𝑖 : Defect numbe 

The obtained defect surrounding average temperature 
(𝑇# )is 41.52°C. According to the defect assessment 
method adopted by ASTM-D4788 in this study, to 
identify concrete defects in thermal imaging, the 
temperature of the defect must differ by at least 0.5°C 
from the adjacent area. In the demonstrated example, the 
temperature difference (∆*)is calculated by subtracting 
the average temperature of defect number 1(𝑇)) from the 
defect surrounding average temperature (𝑇#), resulting in 
0.98°C. As this value is greater than or equal to 0.5°C, it 
indicates that defect number 1 in this example has been 
successfully detected as a defect. 

∆*	= 𝑇)−𝑇$ = 0.98 ≥ 0.5 (℃) (1) 

 

3 Research Results 
In both the first and second phases of the experiment, the 
research results will be presented using line graphs (as in 
Figure 6) and pie charts (as in Figure 7). The third stage 
will involve the use of line graphs and bar charts for 
discussion purposes. For on-site bridge inspections, 
discussions will be presented in tabular form. The 
following is a summary of the three stages of the 
experiment. 

 
Figure 6. The line graph for defect number 4 of the third 
set of specimens, taken at a distance of 1 meter on the 

thermal image between 3:00 p.m. and 5:00 p.m. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1117



 
Figure 7. Pie chart depicting the detection rates of 

different defect shapes at a distance of 1 meter. 

3.1 Result of first-phase experiment 
1. The relative area of the defect's depth significantly 

affects detection outcomes, with sizes smaller than 
1 centimeter in depth proving less detectable by the 
FLIR E5 infrared thermal imager utilized in this 
study. 

2. Defects with a depth of 3.5 centimetres but an area 
smaller than 1 square centimetre are challenging to 
detect with the equipment employed in this research. 

3. The recommended measurement distance for the 
equipment used in this study is between 1 to 2 
meters, allowing for the detection of a broader 
range of sizes. The average measurement error is 
also smaller, consistently below 5%. 

4. The detection rate in this stage of experiments was 
notably low, attributed to insufficient sunlight 
exposure. Adjustments in measurement timings 
during the second stage aim to enhance the 
detection rate. 

3.2 Result of Second-phase experiment 
1. For the thermal imager FLIR E5 utilized in this 

study, the detectability at a measurement distance 
of 1 meter is 93%, and at 2 meters, it is 90%. This 
indicates a substantial increase in detection rates 
during the 3:00 p.m. to 5:00 p.m. period compared 
to the first stage's imaging sessions from 11:00 a.m. 
to 2:00 p.m. 

2. The FLIR E5 thermal imager employed in this 
research can detect not only rectangular defects but 
also various other shapes, aligning with practical 
applications in bridge inspection. 

3.3 Result of Third-phase experiment 
1. Infrared thermal imaging results indicated a 

recognition rate of 38% for the fourth set of 
specimens (pure cracks) and 88% for the fifth set 

(cracks with localized delamination). This suggests 
that the presence of localized delamination around 
cracks contributes to enhancing passive infrared 
thermal imaging detection. 

2. In Deepcrack AI image recognition, the detection 
rate for the fourth set of specimens (cracks) stood at 
100%, surpassing the detection rate of 88% for the 
fifth set (cracks with localized delamination). This 
indicates that localized delamination might 
potentially lower the detection rate in Deepcrack AI 
image recognition. 

3. During false defect recognition in Deepcrack AI 
image recognition, the misjudgement rates for the 
fourth set of specimens (pure cracks) and the fifth 
set (cracks with localized delamination) were 63% 
and 50%, respectively. However, in infrared 
thermal imaging, the misjudgement rates for both 
were 0%. 

Based on the above, it's evident that infrared thermal 
imaging effectively assists AI image recognition in 
defect detection. Defects with very shallow depths or 
small areas may not be detectable by the FLIR E5 
infrared thermal imager used in this study. However, 
given that practical applications often prioritize 
identifying larger or deeper defects that pose higher risks, 
the method used in this study is suitable for bridge 
inspection practices. 

4 Conclusion 
1. Based on the experimental results, this study 

recommends using the FLIR E5 infrared thermal 
imager for imaging at an optimal measurement 
distance of 1 to 2 meters. This range effectively 
detects larger, deeper, and variously shaped defects 
posing higher risks. 

2. Laboratory research and on-site bridge inspections 
indicate that the FLIR E5 infrared thermal imager is 
less suitable for measuring defects with shallower 
depths or smaller areas. However, defects with 
shallower depths or smaller areas do not 
significantly impact bridge safety. 

3. The detection rate significantly improves during 
imaging sessions between 3:00 p.m. and 5:00 p.m. 
compared to those from 11:00 a.m. to 2:00 p.m., 
suggesting that using passive infrared thermal 
imaging for defect detection is advisable when the 
subject has adequate exposure to heat. 

4. The study observed that elongated and small-area 
defects resembling cracks are less detectable by the 
FLIR E5 infrared thermal imager used in this 
research. However, the presence of localized 
delamination around cracks enhances the 
effectiveness of passive infrared thermal imaging. 

5. In the third stage of experiments, it was found that 
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the presence of localized delamination around 
cracks improves the detection rate of passive 
infrared thermal imaging but lowers the detection 
rate of AI image recognition. Additionally, AI 
image recognition exhibits a significantly higher 
false defect identification rate compared to infrared 
thermal imaging. 
The contribution of this work is to confirm that 

smaller and lighter infrared devices can enhance the 
accuracy of detecting concrete cracks. These smaller and 
lighter devices can be easily installed on unmanned aerial 
vehicles in the future research to conduct real-time bridge 
inspection work. 
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