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Abstract 

In construction management as well as in real estate development an appropriate stakeholder analysis 

is essential to determine the roles a particular participant plays within the complex system of a project. 

This is, since though a major part of the projects’ organization is available for being constructed sensibly, 

stakeholders typically reside outside the reach of being subjected to organizing but have to be taken as 

they are. So, at least they need to be understood regarding their ability to mirror the systems’ behaviour 

and stability or possibly impact, control and steer the development of the organization. Only then, the 

respective players can be treated accordingly and efforts to make an organization travel safely toward 

the expected goal can be expected to be successful. Approaches based on systems theory are well-

known, indicating the participants’ roles as being active, reactive, buffering or critical to some 

measurable degree. However, these values suffer from non-linearity and fail to reflect on dominating 

causal cycles within the organization. This paper proposes some progress on elaborating these values 

towards more meaningfulness. Linearizing these characteristics offers to remove some criticized faults 

and helps to introduce the more appropriate parameters leverage, criticality and recursiveness for better 

reflecting the systems’ dependency on the singular players and, hence, allows for their improved 

handling. Therewith, more stable systems, i.e., organizations are to be expected and, hence, quite more 

safely approaching the projects’ target. 
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1. Introduction 

According to the definitions of the IPMA and many other references [1, 2, 3, 4], a specific organization 

is a central characteristic of projects. This is due to the fact that projects refer to unique products, which 

are determined by the contracts, while the service of getting them produced, which is the organization, 

is subject to the market of offering participants.  

On this background, most of the organization is created and constructed in a way that it meets the needs 

of coordination and motivation, generally through respective contracts [3]. However, the issue of 

stakeholder analysis [5, 6, 7, 8, 1] points out, that there are numerous players present in the context of 

a project, which are not linked via contracts but nevertheless have substantial interest in the proceedings 

of the projects as well as impact on the forthcoming. Hence, these cannot be integrated in the complex 

network of organization but though need to be understood and addressed in order to have them 

contribute to the projects’ success. Over the last years, the original idea of a stakeholder analysis has 

been developed further into higher-order cross-impact analysis [9, 10, 11], revealing at least the 

systemic role a player takes and therewith allows understanding the possible impact, threats, help, 

criticality or operability of the stakeholder [12]. The parameters determining the role as critical, buffering, 

active or reactive, derived on the basis of systems’ theory, turn out to be extremely helpful, though are 

criticized as being partly not very descriptive, in particular non-linear. This paper proposes a slightly 

different set of more meaningful parameters aiming at the same functionality and meaning, but derived 

through a simple linear operation. 
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2. Higher Order Cross-Impact Analysis 

The adjacency matrix A of the system [13, 14, 15, 16] is formed by the impacts 
,i ja , a node j is having 

on another node i, i.e., the weight of the unidirectional tie from j to i.  Then, according to the original 

approach [17, 9, 10, 11], the degree to which a node is actively impacting the rest of the system is given 

by the “Active Sum” (according to [17] here named activity), which is formed by cumulating the weight 

of all outgoing ties. In the same manner, the “Passive Sum” (according to [17] here reactivity) is 

composed by cumulating the weights of all ingoing ties. Hence, the vectors of activity, resp. reactivity 

are given by 

( ) 1a Th A=   (Activity)          
( ) 1i

rh A=   (Reactivity)                                 (1,2) 

This original approach only refers to the nearest neighbors and is therefore incomplete [18]. Since the 

weights of a tie can easily be understood as the number of paths with lengths 1 from node j to node i 

with weight 
,i ja , the k-th power of A  reflects the paths with lengths k from node j to i. The weights within 

a longer path are therewith multiplied while the elements of
kA  contain the cumulated weights of all 

such paths. Then, the sum of all paths with lengths from 1 to k with their individual weight is represented 

by the elements of the higher-order adjacency matrix 

( )

1

mm k

k
A A

=
=                                                                       (3) 

The components of 
( )mA  represent, in fact, the total strength of impact a particular node i is subjected 

to or is handing out. The number of iterations m actually needs to be chosen infinitely large in order to 

include all possible paths. However, if the impact is dying down with longer paths (which is required for 

stability) a limited number of iterations will be sufficient.  

Then, higher-order activity and reactivity are computed from the higher-order adjacency matrix in the 

same way as with the first order approach (while redefining from here on
( ): mA A= ).   

( ) ( )1 1a T rh A h A=  =                                                  (4) 

Furthermore, the cumulated weighted paths leading back to any particular node are held in the diagonal 

of 
( ): mA A= . Hence, the recursiveness of the nodes is determined by 

 
( ) diagsh A=                                                                      (5) 

3. Parameterization of Systemic Roles 

Mimicking stakeholder analysis plots, activity and reactivity are denoted on a graph depicting the roles 

of the nodes (stakeholders/participants/elements/aspects) as being active, reactive, critical or buffering. 

 

Fig. 1. Plot Roles. 

Active nodes would steer the system behaviour while reactive nodes are useful as indicators of the state. 

Critical nodes are both active as well as reactive and therefore tend to destabilize the system as a 



 

 

consequence of small modifications which again lead to more modifications. Buffering elements are 

decidedly noncritical and serve as inertia of a system. 

According to Vester [17] the parameter ( ) ( )/ /a r

i i i i iQ AS PS h h= =  distinguishes between activity and 

reactivity while the parameter 
( ) ( )a r

i i i i iP AS PS h h=  = serves as a measure of criticality. In particular, Q 

reflecting the tangent of the angle pointing to the node is criticized as approaching infinite values for 

highly active nodes. Criticality again does not deal with possibly existing loops within the system. 

4. Linearization of Characteristics 

The parameters activity and reactivity turn out to be easily derivable from the cumulated adjacency 

matrix. However, their quotient and product are strongly non-linear and, hence, can only be obtained by 

computing the characteristics component-wise. Since they are only of qualitative value and more or less 

arbitrarily defined, more suitable definitions may be found.  

Graphically, normalised activity and reactivity vectors in the n-dimensional space of node-components 

point into the most active, respectively most reactive direction. The components indicate the degree to 

which the respective node contributes to the character of activity or reactivity. If these two vectors were 

added, the result (criticality) would point into the direction where most critical nodes lie, while the 

difference of vectors (leverage) is expected to represent the tendency to lean on the active side or the 

reactive side. 

 

Fig. 2. Space spanned by the nodes with activity and reactivity vectors and linear leverage and 
criticality vectors. 

This understanding is supported by developing the quotient and the product into Taylor series in close 

proximity of the fix-point 
( ) 1a

ih = and ( ) 1r

ih = . For this consideration the abbreviations 
( )a

ih a=  and 
( )r

ih r=  are used. 

4.1. Linearized leverage  

The quotient 
( / )a r

ih is supposed to indicate the degree of activeness versus reactiveness. The formal 

definition as a quotient  
( / ) /a r

ih a r= bears the mentioned problems of infinity and might helpfully be 

replaced by the therewith determined angle, additionally turned by -45 degrees to the horizontal axis. 

( / ) arctan
4

a r

i

a
h

r



= −                                                                  (6) 

Developed to the first order around ( , ) (1,1)a r = we obtain the linear leverage: 



 

 

( )

1, 1 1, 1 1, 1

arctan( / ) ( / ) arctan( / ) ( / )
arctan ( 1) ( 1)

4 ( / ( /
 

)
 

)

l

i

a r a r a r

a a r a r a r a r
h a r

r a r a a r r



= = = = = =

       
= − + − + −             

 

                                                                    (7) 

The first two constant terms are equal with different sign and, hence, cancel for each other: 

1, 1

arctan / 4
a r

a

r


= =

 
= 

 
                                                        (8) 

The  ( 1)a − term at ( , ) (1,1)a r = is: 

2

1, 1 1, 1

arctan( / ) ( / ) 1 1 1
( 1) ( 1)

( / ) 1 ( / ) 2
a r a r

a r a r a
a a

a r a a r r
= = = =

     −
− = − =   

  +   
                (9) 

Equally, the ( 1)r −  term at ( , ) (1,1)a r =  is: 

2 2

1, 1 1, 1

arctan( / ) ( / ) 1 1
( 1) ( 1)

( / ) 1 ( / ) 2
a r a r

a r a r a r
r r

a r r a r r
= = = =

     − −
− = − = −   

  +   
                (10) 

In total, we obtain the linear approach for leverage 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
( 1 1) ( ) (  ) ( )

2 2 2 2 2 2
  l a r l a r

i i i

a r
h a r a r h h h h h

− −
= − = − − + = − = − = −       (11) 

4.2. Linearized criticality  

The product ( · )a r

ih  is also arbitrarily given by the area of the rectangle spanned by a  and r . In the end, 

the value is expected to rise with high active and high reactive values which might be roughly given by 

the sum of the vectors. Instead of just the product  ·a r  we sensibly use the geometrical mean ·a r , 

alternatively, the length of the diagonal 
2 2a r+ . 

 
The geometrical mean approach runs like this: 

( · ) ·a r

ih a r

=                                                                (12) 

The Taylor development around ( ) ( )a, r 1,1=  to the first order leads to the linear criticality: 

( )

1, 1
1, 1 1, 1

· ( · ) · ( · )
· ( 1) ( 1)

( · ) ( · )

c

i
a r

a r a r

a r a r a r a r
h a r a r

a r a a r r= =
= = = =

      
 = + − + −           

          (13) 

The first term obviously equals 1, the ( 1)a −  term is 

1, 1

1 1
( 1)

1 22 · a r

r a
a

a r = =

− 
− = 

 
                                                 (14) 

while the ( 1)r −  term is, respectively 

1, 1

1 1
( 1)

1 22 · a r

a r
r

a r = =

− 
− = 

 
                                                 (15) 

In total, we obtain, as expected, a sensible linearized definition of criticality 



 

 

( ) ( ) ( ) ( )1 1 1 1 1
1 (2 1 1) ( ) ( )

2 2 2 2 2

c c a r

i

a r
h a r a r h h h

− −
= + + = + − + − = + = +           (16) 

The diagonal approach develops accordingly: 

( · ) 2 2a r

ih a r

= +                                                             (17) 

Again, the Taylor development to the first order around the fix-point ( ) ( )a, r 1,1=  yields 

2 2 2 2 2 2 2 2
( ) 2 2

2 2 2 2
1, 1

1, 1 1, 1

( ) ( )
( 1) ( 1)

( ) ( )

c

i
a r

a r a r

a r a r a r a r
h a r a r

a r a a r r= =
= = = =

    +  +  +  + = + + − + −   
   +   +       

     

           (18) 

Then, the constant term is 2 , while the ( 1)a −  term comes to be 

2 2

1, 1

1 1
( 1) 2

22 a r

a
a a

a r = =

  −
− = 

+ 
                                       (19) 

and the ( 1)r −  term is 

2 2

1, 1

1 1
( 1) 2

22 a r

r
r a

a r = =

  −
− = 

+ 
                                              (20) 

In total, we obtain the same result, scaled in a slightly different way (which has no meaning): 

( )

( ) ( ) ( )

1 1 1 1
2 (2 1 1) ( )

2 2 2 2

1
( )

2

c

i

c a r

a r
h a r a r

h h h

− −
= + + = + − + − = +

= +

                (21) 

On this background, we redefine the essential characteristics of nodes from the symmetric and the 

antisymmetric parts of the adjacency matrix (of order m ) as follows: 

( ) 1a Th A=   (Activity)                                                                                   (22) 

( ) 1rh A=   (Reactivity)                                                                                 (23) 

( ) diagsh A=  (Recursiveness)                                                                      (24) 

( )( ) ( ) ( )1
1

2 2

T
l a r A A

h h h
−

= − =   (Leverage)                                             (25) 

( )( ) ( ) ( )1
1

2 2

T
c a r A A

h h h
+

= + =   (Criticality)                                             (26) 

Obviously, these parameters offer themselves for a much easier approach to analyse the characteristic 

roles of the nodes:  



 

 

 

Fig. 3. Roles based on linearized criticality and leverage. 

Due to the linear character of the parameters (based on unscaled linear impact values), the 

interpretation requires normalisation which extends equally into all dimensions. Criticality offers itself 

best for normalisation since the lower end is well-defined as zero while the most critical situation may 

be set to 1. However, this needs sensibly to be limited to loop-less structures. Loops are capable to 

increase criticality to unlimited heights. Since the diagonal ( )sh  is an additive part of ( )ah  and ( )rh thus 

shows up as a term in criticality, but not in leverage, maximum criticality reduced by recursiveness is 

normalised ( ) ( )

( )( ) :1c s

maxh h− = . Then, maximum activity as well as reactivity come to be 1 as well.  

For a sensible and interpretable graph, criticality is plotted on the abscissa running in [0..1]  without 

recursiveness and further to higher values including recursiveness. Leverage is indicated on the ordinate 

in the range  1...1− . Nodes are limited to the grey area of the graph. The particular recursiveness of a 

node as a share of its criticality is plotted as an additional bar at the position of each node pointing to 

the left. Since the graph is based directly on the characteristic parameters, limits to the domains are not 

sensibly indicated.  

5. Representation of Fundamental Structures 

Clearly, any such analysis of systems is mainly intended for the part of the organization, which cannot 

be constructed in an appropriate way but needs to be takes as it is. The constructable part should per 

se follow sensible rules and, therefore, lead to well-understood structures. Though, a proper cross-

impact analysis might reveal and point out respective weak spots which have been overseen up to then 

or deliberately disregarded.  

An abstract interpretation of the cross-impact analysis then allows detecting sensible criteria of 

manageable structures. 

5.1. General interpretation 

First of all, recursiveness indicates the degree and strength of loops. With orders rising from linear to 

higher values, very small loops which were implemented for reasons of control can be identified and 

removed from the system by merging the controlled node and the controlling node into one independent 

node. Then, further and higher-order loops obviously indicate feed-back problems, weighted with their 

strength. Such are strictly to be avoided, at least if they are of significant strength. With the given analysis 

a quantitative measure is available and allows judging these situations. 

The absence of loops indicates sensible structures, i.e., graph-theoretical tree-structures and 

precedence networks. These are purely causal structures, where the reason for a value is only given by 

predecessors and all successors are following to some degree. Then, activity and reactivity are taken 

from the position where a node is sitting within the causal chains. More active nodes are found at the 

beginning while more reactive nodes are positioned further down the causal sequences. Critical nodes 

(since not due to loops) are in the middle of causal chains. They have a lot of information to follow and 

at the same time are causing modifications to numerous successors. Hence, the further up a node sits, 

the higher the positive leverage in the chain, the further down, the more negative leverage is expected.  

On this background some fundamental causal networks can be elaborated:  



 

 

 

Fig. 4. Fundamental causal structures. 

5.2. Linear causal chains  

Let all nodes sit on a singular causal chain with length  . Each node at position [1.. ]p =   where p =   

is the top reason of the chain and 0p =  the bottom consequence computes 
( )a

ph p=  and ( )r

ph p=  −

. Therewith we obtain:  

( ) ( ) / 2 / 2c

ph p p const= + − =  =                                                   (27) 

( ) ( ) / 2 / 2 [ / 2... / 2]l

ph p p p= − + = − = −                               (28) 

indicating roles of constant criticality and linear leverage. Hence, these roles show up in a vertical line 

from the top of the scale to the bottom. In particular, no critical nodes are standing out. Normalised, the 

longest causal chain occupies the ( ) 1ch =  line, shorter chains make smaller copies to the less critical 

side. 

5.3. Causal double tree  

Within graph-theoretical precedence networks, given by a single starting node, a single ending node 

and just loop-less structures in between, causal substructures would be double trees expanding and 

then reducing themselves from the top to the node and the same from the node to the bottom. Let there 

be a structure of causal length  , where at the top of activity a single node extends its impact causally 

to a next level of   nodes which again are impacting  nodes and so on for the first half of  . For the 

second half of  this is reversed, and the impact of the higher layers is brought together by  =  until 

all consequences are collected by the singular resulting node. Again, let p  be the considered level of 

the graph, p =   as the top and 0p =  the bottom. Then, the number of impacted nodes of a position 

p  is all the underlying nodes which can be accessed by   via the respective sub-net, the impacting 

nodes taken from the respective subnet above p , i.e., p −  Hence, we have using geometrical series: 

/2 1
( ) 2 /2

/2 /2 1
( ) 2 /2 /2

1
2·(1 ... )

1

1
2·(1 ... )

1

p
a p

p

p
r p

p

h

h


  




  



+

 − +
 −

−
= + + + =

−

−
= + + + =

−

                                    (29) 

5.4. Causal tree  

The classical causal tree makes use of the parameters  = and  as before, though maintaining a 

single causal path to the root of the tree for each node. Then, all nodes above p  sum up to a single 

chain of length 
( )a

ph p=  − , while the reactive nodes below are formed by the sub-tree:  

( ) 2 1(1 ... ) (1 ) / (1 )r p p

ph     += + + + = − −                                    (30) 

These strictly causal structures are limited to a criticality of 1 and occupy the roles as indicated in the 

graph 



 

 

 

Fig. 5. Distribution of roles for independent causal structures. 

6. Conclusion 

Creating an appropriate and functioning organization is the major part of management. Though, besides 

numerous contracts to be designed and agreed on, quite many players are forming the circumstances 

of the project where their behaviour and impact is just a given. Hence, a substantial part of the task of 

managing is understanding the circumstances before attempting to shape the environment. Within a 

complex system, each element is capable of taking up more or less crucial roles, where activity and 

reactivity are the most visible characteristics, steering the system and indicating its course. 

Nevertheless, the newly derived parameters of criticality and leverage separated from recursiveness in 

total seem to improve and simplify the description of this part of the system. Their knowledge is expected 

to allow for creating sensible cooperation patterns which may help to bring the external stakeholders in 

as well as the internals based on contracts. 
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