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Abstract  

Monitoring and assessing the progress and quality in road construction are crucial aspects of 
infrastructure development. Among these, the identification of surface structural-layer serves as a key 
task for progress control and quality management. Traditional manual inspection methods are inefficient 
and costly, especially given the spatially linear and narrow nature of road construction areas, making 
them inadequate for smart construction management. The application of low-altitude UAV imagery 
offers a new opportunity to address these challenges. However, its effective utilization hinges on the 
precise identification of surface structural-layer during construction. Conventional segmentation 
techniques often struggle with noise interference, leading to limited accuracy in identifying surface 
structural-layer. To overcome this, this paper proposes an improved DeepLabV3+ model for the 
identification of surface structurallayer in road construction. The model enhancement involves 
integrating a ResNet‑50 backbone to bolster feature representation and extraction capabilities, thereby 
mitigating overfitting risks. Additionally, a CBAM (Convolutional Block Attention Module) is incorporated 
into the ASPP (Atrous Spatial Pyramid Pooling) module to enhance model performance, particularly in 
capturing fine details and boundary information. A self-constructed dataset is utilized, partitioned into 
training, testing, and validation sets in an 8:1:1 ratio. The performance of the proposed model is 
evaluated using four key metrics: overall accuracy, mean accuracy, frequency-weighted accuracy, and 
mean intersection over union. Comparative analyses demonstrate the superiority of the improved 
DeepLabV3+ model over the baseline in terms of segmentation accuracy. This paper provides a new 
method for the monitoring and assessment of road construction progress and quality, advancing the 
application of low-altitude UAV technology in intelligent construction practices.  
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1. Introduction   

Monitoring and assessing the progress and quality in road construction are essential components of 
the full lifecycle management of road infrastructure. The road structural layers typically include the 
surface structural-layer, base course, and subgrade, among others. Among these, the construction of 
the surface structural-layer is critical due to factors such as complex construction processes, stringent 
quality control standards, and significant impact on the overall structural performance of the road, 
making it a key task of progress control and quality management [1]. Precise identification of surface 
structural-layer is also an essential component in monitoring and evaluating the progress and quality of 
its construction.  

Due to the significant spatial linear extension characteristics of road projects, construction areas often 
exhibit narrow and elongated strip-like distributions. This characteristic presents significant challenges 
to traditional methods of monitoring progress and quality [2]. Currently, monitoring and assessing the 
progress and quality of surface structural-layer during construction primarily rely on traditional manual 
inspection methods. These methods involve technicians conducting on-site sampling inspections using 



 

 

tools such as rulers and levels. However, traditional manual inspections are inefficient and costly, 
making it challenging to achieve continuous, automated monitoring throughout the construction 
process. Additionally, the inspection data often exhibit significant delays, failing to meet the 
requirements for timely, comprehensive, and precise monitoring demanded by modern intelligent 
construction management. In this context, low-altitude UAV imagery technology, as a new generation 
of information technology tool, provides a new opportunity for the digitalization and intelligence of road 
construction management [3].  

In recent years, the rapid development of deep learning technologies has provided strong technical 
support for the analysis and application of image data in the road sector. Notably, significant progress 
has been made in tasks such as road driving area recognition and road scene semantic segmentation, 
particularly in the field of autonomous driving [4]. However, the research on the application of deep 
learning technologies in utilizing low-altitude UAV imagery for road surface structural-layer remains 
limited.  

To address the research gap in this field, this paper proposes an improved DeepLabV3+ model. 
Specifically, ResNet‑50 is employed as the backbone network, and the CCBAM is incorporated into the 
ASPP module.  

2. Related works  

In recent years, with the rapid development of UAV technology, the application of low-altitude UAV 
imagery data in monitoring and assessing road construction progress and quality has gradually gained 
attention [5]. UAV can capture a large amount of image data in a short period of time, which is 
particularly advantageous for monitoring tasks involving long-duration flights or extensive areas. 
Traditional manual processing methods or computer vision techniques often struggle to efficiently 
handle such large-scale imagery data. The development of machine learning including deep learning 
technologies has provided strong technical support for the large-scale and efficient processing of UAV 
imagery data in the field of road construction. Reference [6] applied the MLR (Multivariate Linear 
Regression) algorithm to process UAV imagery of road subgrades during construction, aiming to 
achieve rapid prediction of soil moisture content in the subgrade. However, the study was conducted in 
a test field rather than a real road construction scenario. Reference [7] utilized the YOLOv4 and Deep 
SORT algorithms to monitor road construction safety factors, including construction personnel, 
vehicles, safety signs, and guardrails. Reference [5] applied CSN (Convolutional Siamese Networks) 
and CL (Contrastive Loss) functions to identify changes in road construction. By comparing feature 
vector differences between images taken at different times, the method detects variations in 
construction areas. In the method, the Siamese network extracts meaningful feature representations 
from the images, while the contrastive loss function adjusts the network parameters through 
backpropagation to ensure that extracted features are sensitive to changes and robust to unchanged 
areas. Nevertheless, this paper did not perform semantic segmentation to extract road information from 
UAV imagery. In contrast, it employs semantic segmentation algorithms to extract key objects from 
UAV imagery of construction sites, thereby eliminating irrelevant information, and significantly 
enhances the efficiency and accuracy of image processing, facilitating automated construction progress 
monitoring, quality inspection, and decision support [8].  

Deep learning models for semantic segmentation include FCN, E-Net, U-Net, and the DeepLab series 
[9]. Among these, the DeepLabV3+ model is widely used in semantic segmentation tasks due to its 
excellent multi-scale contextual information processing capabilities [10]. Despite the excellent 
performance of the DeepLabV3+ model in semantic segmentation tasks, it still faces challenges such 
as insufficient detail capture and a strong dependence on large-scale datasets. To address these 
limitations, existing studies have introduced stronger feature extraction backbones, such as ResNet, to 
enhance the model's feature representation and segmentation accuracy. Additionally, attention 
mechanisms, like SE and CBAM, have been integrated to improve the model's ability to model detailed 
features, thereby effectively enhancing overall performance [11]. Literature [8] referenced and applied 
an improved DeepLabV3+ algorithm combined with a semi-global stereo matching algorithm for road 
boundary segmentation and image object boundary matching, subsequently constructing a road width 
measurement system. However, the paper focuses on the operation and maintenance phase rather 
than the construction phase of the road. In addition, the paper is based on image data captured by 
vehicle-mounted cameras, rather than UAV imagery.  

To date, no applications of deep learning-based UAV imagery analysis methods for highprecision 
identification of surface structural-layer during construction have been reported, particularly concerning 
the delineation of structural layer boundaries. Besides, the boundaries of surface structural-layer in 



 

 

construction scenarios are often obscured by factors such as construction materials, roadside 
vegetation, and building shadows, making accurate boundary detection a significant challenge in 
current research. Such factors justify our study.  

3. Data Preparation  

High-quality data preparation is not only the foundation of model training but also a critical factor 
influencing model performance. Therefore, four aspects, i.e., the characteristics of road surface 
structural-layer under construction, data acquisition, data preprocessing, and dataset construction are 
included in this section. Based on the analysis of data characteristics, it elaborates on acquisition 
parameters, augmentation procedures, filtering methods, annotation strategies, and dataset 
construction approaches, ensuring that the subsequent model training is scientifically grounded and 
practically feasible at the data level.  

3.1. Road Surface structural-layer and Their Characteristics Under Construction  

The fundamental components of a road include the surface structural-layer, subgrade, bridges and 
culverts, tunnels, drainage systems, protective works, and traffic service facilities [12]. Among them, 
the surface structural-layer is a critical component of the road structure. Its construction progress 
directly influences the advancement of the entire road project, making it a key path in the construction 
schedule. Additionally, the quality of its construction directly affects the road's strength, durability, and 
driving safety.  

The primary construction materials for surface structural-layer include cement concrete and asphalt 
concrete [13]. These materials possess distinctive surface characteristics, rendering surface structural-
layer with prominent visual features in UAV imagery, thereby facilitating effective differentiation from 
non-road areas. However, due to the similarity in construction materials between surface structural-
layer and other road structures, UAV imagery data often exhibit similarities in grayscale, colour, texture, 
and shape. Consequently, more advanced feature extraction techniques are required to achieve 
precise differentiation.  

Data Acquisition  
This study collected a raw UAV imagery dataset collected on December 19, 2022, during the 
construction of the Baxiang Interchange section of the Baxiang Road in Dahua Yao Autonomous 
County, Hechi City, Guangxi Zhuang Autonomous Region, China (hereinafter as "Guangxi Baqiang 
Road project"). The UAV model employed was the DJI Matrice 300 RTK, equipped with the Share UAV 
PSDK 102S V3 camera. The flight parameters were set as follows: terrain-following flight at an altitude 
of 180 meters, forward overlap of 70%, side overlap of 80%, and GSD (Ground Sampling Distance) 
better than 3 cm/pixel. During the image acquisition, the ambient temperature was approximately 18°C, 
with clear weather and a southeast wind at level 2.  

3.2. Data Preprocessing  

This study utilized a raw UAV imagery dataset collected during the construction phase of the  

Guangxi Baqiang Road project. The dataset comprises 523 images with a resolution of 6000×4000 
pixels. After excluding images that do not contain surface structural-layer (such as those of farmland 
and forested areas), 160 images meeting the criteria for construction surface structural-layer were 
selected. However, the limited number of 160 images is insufficient for training deep learning models. 
To address this issue, a Python script was developed to perform semi-automatic data augmentation on 
these 160 original images. The specific process of data augmentation is as follows:  

(1) Starting from the top-left corner, crop 160 images with dimensions of 512×512 pixels.  

(2) Starting from the bottom-right corner, crop 160 images with dimensions of 512×512 pixels.  

(3) Starting from the centre of the image, crop 160 images with dimensions of 512×512 pixels.  

(4) Apply a 90° clockwise rotation to the 480 cropped images obtained from the above steps.  

Due to the loss of surface structural-layer information in some cropped images or the presence of 
minimal information only at the boundaries, it was necessary to perform a secondary screening of the 
960 UAV images after preliminary processing. Ultimately, 373 valid images were selected for the 
construction of the subsequent self-constructed dataset.  



 

 

3.3. Dataset Construction  

To enhance the efficiency of semantic segmentation annotation in the self-constructed dataset, this 
study employed the semantic segmentation AI tool AnyLabeling software. The initial intelligent semantic 
segmentation annotations were performed using its built-in Segment Anything 2 (Hiera-Large) model. 
However, the annotation results obtained using this software exhibited numerous errors in the boundary 
regions, necessitating manual corrections for each image to ensure the acquisition of high-precision 
annotated data.  

During the manual correction of annotations, various interference factors arise, such as construction 
vehicles, personnel, material stockpiles, dirt-covered pavements, tree obstructions, roadside buildings, 
and shadows cast by trees. To ensure the accuracy of semantic segmentation annotations for the 
surface structural-layer, the following strategies were implemented to address these interference 
factors:  

(1) Annotate interference objects within the boundary of the surface structural-layer as part of the 

surface structural-layer. Construction vehicles, personnel, and temporary building materials within the 

surface structural-layer may obscure parts of the pavement but do not alter the road's structural 

integrity. Therefore, classifying these interference objects as part of the surface structural-layer helps 

prevent misclassification and ensures accurate segmentation of the actual pavement area.  

(2) Annotate interference objects that completely obscure the boundary of the surface structural-

layer as non-surface structural-layer areas. Interference objects that entirely block the boundary of the 

surface structural-layer make it impossible to accurately infer the actual boundary. Labelling these 

areas as part of the surface structural-layer could lead the model to learn incorrect boundary features, 

thereby reducing the accuracy of semantic segmentation.  

(3) The area within the boundary line of the surface structural-layer is annotated as the surface 

structural-layer region, while the area outside the boundary is labelled as the non-surface structural-

layer region. Despite the blurred boundaries caused by obstructions such as trees and building 

shadows, partial information of the surface structural-layer remains identifiable. This approach helps 

retain valid surface structural-layer information, enhances the model's ability to recognize the surface 

structural-layer, and improves its handling of interference objects, thereby ensuring the accuracy of 

semantic segmentation.  

The 373 annotated images obtained from the above process were exported as JSON format label files. 
Subsequently, a Python script was developed to batch convert these files into grayscale PNG images. 
This process resulted in 373 original images of 512×512 pixels, 373 corresponding grayscale images, 
and 373 JSON files containing the annotation information.  
These datasets were then divided into training, validation, and test sets in an 8:1:1 ratio.  

4. Improvement of DeepLabV3+  

DeepLab is a representative series of semantic segmentation models built on convolutional neural 
networks. It achieves high-precision, pixel-level segmentation by integrating modules such as atrous 
convolution and ASPP into the Fully Convolutional Network (FCN) framework.  

Specifically, DeepLabV1 introduced atrous convolution into the FCN architecture. Building on this, 
DeepLabV2 proposed the ASPP module. Further, DeepLabV3/V3+ optimized the dilationrate 
scheduling of atrous convolution and introduced an encoder–decoder structure.   

After multiple iterations, the latest DeepLabV3+ model incorporated the encoder–decoder architecture, 
which not only enhances feature representation, but also significantly improves boundary-detail 
recovery, thereby boosting overall segmentation performance [14-17].  



 

 

Specifically, DeepLabV3+ enhances segmentation accuracy, particularly along object boundaries, by 
integrating high-level semantic features extracted by the encoder with low-level spatial features. Its 
overall architecture employs a plug-and-play backbone design (DCNN, Deep Convolutional Neural 
Network), allowing the selection of Xception, ResNet, or MobileNet according to application needs [12]. 
To expand the receptive field without reducing feature-map resolution, DeepLabV3+ introduces atrous 
convolution in the final stage of the chosen backbone. The ASPP module in the encoder comprises 1×1 
convolutions, three 3×3 convolutions with different dilation rates, and an image pooling layer. These 
components are designed for feature dimensionality reduction, multi-scale contextual information 
extraction, and global context acquisition, respectively. The decoder processes low-level features 
through 1×1 convolutions, fuses them with high-level semantic feature maps (upsample by 4), refines 
the features via multiple 3×3 convolutions, and performs another fourfold upsampling to output precise 
segmentation predictions. The overall architecture of the DeepLabV3+ network structure is illustrated 
in Figure 1.  

  

Fig. 1. Network architecture of the DeepLabV3+ network structure [17].  

This study improves upon the baseline DeepLabV3+ model [18]. Inspired by the approaches in [9] and 
[11], the original backbone network is replaced with ResNet‑50 to enhance the model's representation 
and feature extraction capabilities while reducing the risk of overfitting [9]. In addition, to further enhance 
the model’s performance, the CBAM module is integrated into the ASPP module located beyond the 
backbone network within the encoder [19]. The architecture of the improved DeepLabV3+ model is 
depicted in Figure 2. The following explains the rationale.  

4.1. Backbone Network and Its Improvements   

The surface structural-layer of roads often possesses complex boundaries and intricate details. 
Accurately segmenting these boundaries is crucial for precise identification of the distribution and 
morphology of surface structural-layer during construction. To improve segmentation accuracy, 
employing ResNet‑50 as the backbone network is an effective approach. ResNet-50, through its deep 
network structure and residual connections, strengthens the model's ability to extract detailed features, 
particularly excelling in capturing complex boundaries and fine details.  



 

 

  

Fig. 2. Improved DeepLabV3+ network structure.  

In traditional convolutional neural networks, information is processed through sequential layerwise 
propagation, which can lead to the vanishing gradient problem, especially in deeper networks. To 
mitigate this issue, ResNet introduces residual connections. The core idea of a residual connection is 
expressed by the formula:  

y=F (x, {Wi}) +x  

In this equation, x represents the input feature map, F (x, {Wi}) denotes the feature map obtained after 
processing through convolutional layers and activation functions, and y is the output feature map. The 
residual connection facilitates the direct transmission of information between different layers, ensuring 
that gradients can effectively propagate to deeper layers, thereby addressing the vanishing gradient 
problem commonly encountered in traditional convolutional neural networks.  

ResNet‑50 is a variant of the ResNet series, consisting of 50 layers [20]. It retains the advantages of 
residual connections and enhances model performance through deeper network layers. In the semantic 
segmentation task of surface structural-layer, ResNet‑50 effectively extracts detailed features through 
its deep convolutional layers and residual connections, particularly excelling in processing boundaries 
and small objects, thereby improving segmentation accuracy. Leveraging these advantages, employing 
ResNet‑50 as the backbone network is expected to significantly enhance the segmentation accuracy 
of complex boundaries in surface structural-layer during construction, improving the model's 
performance in handling details and interference factors.  

4.2. ASPP Module and Its Improvements  

The key to identifying surface structural-layer during construction lies in the high-precision semantic 
segmentation of their boundaries. To further enhance the segmentation accuracy, attention mechanism 
modules are integrated into the DeepLabV3+ baseline model. Attention mechanisms help the model 
focus on important features while suppressing irrelevant ones, thereby improving its representational 
capacity. Common attention mechanisms include SE, ECA, CA, and CBAM [19]. Among these, CBAM 
is a lightweight and efficient mechanism that enhances model performance in complex image scenarios 
by optimizing feature map representations in convolutional neural networks. CBAM consists of two 
sequential modules: the Channel Attention Module (CAM) and the Spatial Attention Module (SAM), 
which focus on extracting key features and important regions within feature maps, respectively [21]. 
Incorporating CBAM into the DeepLabV3+ model enables precise attention to the boundaries and 
details of surface structural-layer during construction, thereby being expected to improve the accuracy 
of semantic segmentation, especially in fine-grained boundary recognition.  

For this purpose, this paper retains the original multi-scale atrous convolution and image-level pooling 
structures in the ASPP module of DeepLabV3+, and introduces the CBAM attention mechanism to 
further boost the representational power of the feature maps. Specifically, the input image is first 
processed by five parallel branches:  



 

 

(1) 1×1 convolution branch, to preserve the original channel information;  

(2) Three 3×3 atrous convolution branches (with dilation rates of 6, 8, and 12), to capture context at 

multiple scales;  

(3) Image-level global average pooling branch (Image Pooling), which applies global average pooling 

over the entire feature map, then a 1×1 convolution for channel compression, and upsamples the 

result back to the original feature-map size.  

Subsequently, the five multi-scale features are then fed into the CBAM module, where CAM and SAM 
are applied sequentially. Through weight mapping along the channel and spatial dimensions, the model 
adaptively emphasizes semantically important regions while suppressing irrelevant noise. After 
attention weighting, the five feature maps are concatenated along the channel dimension, forming a 
"large" feature map (High-Level Features) that integrates multi-scale information with emphasized key 
areas. Finally, this feature map is passed through a 1×1 convolution (self. project) to unify the channel 
count and integrate information, outputting the final high-level semantic features to be passed to the 
decoder. It is important to note that the five branches operate in parallel, with each branch used to 
extract features at different scales and undergo attention weighting via CBAM. Although the CBAM 
modules are the same and perform the same function, their input and output data are different.  

5. Experiments and Analysis  

To validate the performance of the improved DeepLabV3+ model in semantic segmentation of surface 
structural-layer from UAV imagery during construction, this paper utilized the afore mentioned self-
constructed dataset for training and evaluation.  

5.1. Experimental Hardware and Software Environment  

The training and evaluation processes were conducted on the AutDL computing cloud platform provided 
by Vistop Cloud (Nanjing) Technology Co., Ltd. The specific hardware and software environment are 
as follows:  

(1) Software environment  

The operating system used in this experiment was Ubuntu 20.04. Ubuntu 20.04, with the deep learning 
framework PyTorch 1.10.0, Python version 3.8, and CUDA version 11.3.  

(2) Hardware configuration  

The system used in this experiment was equipped with an NVIDIA GeForce RTX 4090D GPU, featuring 
14,592 CUDA cores and 24 GB of GDDR6X memory, delivering exceptional computational power for 
large-scale deep learning model training and inference. The CPU was an Intel Xeon Platinum 8474C 
processor, operating at a base frequency of 2.1 GHz with a turbo boost up to 3.8 GHz, comprising 48 
cores and 96 threads, facilitating efficient multi-threaded computations for data preprocessing tasks. 
The system was further supported by 80 GB of RAM, ensuring stable operation during extensive dataset 
training. Storage configuration included a 30 GB system disk and a 50 GB data disk, providing ample 
space for storing training data and model checkpoints.  

5.2. Model Performance Evaluation Metrics  

This paper utilized the improved DeepLabV3+ model to train and evaluate performance on a custom 
semantic segmentation dataset of surface structural-layer captured during the construction phase of 
the Guangxi Baqiang Road project.  

The evaluation metrics for model performance include overall accuracy, mean accuracy, frequency-
weighted accuracy, and mean intersection over union. Overall Accuracy (Overall Acc) represents the 
ratio of correctly classified pixels to the total number of pixels, providing an assessment of the model's 
overall classification performance across all categories. Mean Accuracy (Mean Acc) is the average of 
the accuracies for each class, calculated as the ratio of correctly classified pixels to the total number of 
pixels in that class. Frequency-Weighted Accuracy (FreqW Acc) is the weighted average of class 
accuracies, with weights corresponding to the frequency of each class in the dataset, thereby accounting 
for class distribution differences and giving higher weight to more frequent classes. Mean Intersection 



 

 

over Union (Mean IoU) is a critical metric for evaluating segmentation performance, indicating the ratio 
of the intersection to the union of the predicted and ground truth regions for each class. Mean IoU is the 
average of the IoU values across all classes.  

These metrics are commonly used in combination to comprehensively assess the performance of 
semantic segmentation models, considering the model's processing capability across different classes 
and its overall performance.  

5.3. Experimental Results and Analysis  

To evaluate the performance of the improved DeepLabV3+ model, training experiments on both the 
baseline DeepLabV3+ model and the enhanced version was conducted. An ablation study was 
performed to compare the effects of the improvements. The optimal model parameters were assessed 
using four evaluation metrics: Mean IoU, Overall Acc, Mean Acc and FreqW Acc. All model training and 
evaluation were conducted in the same hardware environment, and the corresponding software 
environment was utilized according to the model configurations. Each model was trained using a 
custom semantic segmentation dataset of surface structurallayer images collected during the 
construction phase of the Guangxi Baqiang Road project.  
The detailed data are presented in Table 1.  

Table 1. Comparison and Performance Analysis of the DeepLabV3+ Baseline Model and the Improved DeepLabV3+ Model.  

NO.  Overall Acc  Mean Acc  FreqW Acc  Mean IoU  

DeepLabV3+  0.980276  0.978326  0.962549  0.928944  

Improved DeepLabV3+  0.986225  0.969868  0.973090  0.947663  

According to the data in Table 1, there are differences in the evaluation metrics between the baseline 
DeepLabV3+ model and the improved DeepLabV3+. Compared with the baseline, the improved 
DeepLabV3+ achieves a 1.92 percent increase in the primary metric, Mean IoU, indicating more 
effective performance in fine-grained segmentation and handling of complex boundary regions. In 
addition, the improved model also shows greater gains in Overall Accuracy and Frequency‑Weighted 
Accuracy, with increases of 0.61 percent and 1.10 percent, respectively. However, Mean Accuracy 
decreases by 0.86 percent, possibly due to slight drops in classification accuracy in shadowed areas, 
regions occluded by trees, or small interfering objects. Overall, the improvements across multiple 
metrics demonstrate the superior performance of the improved DeepLabV3+ in high-precision semantic 
segmentation tasks.  

The visualized images of the test set from the self-constructed semantic segmentation dataset of the 
surface structural-layer during the construction phase of the Guangxi Baqiang Road project, using the 
improved DeepLabV3+ model are shown in Figure 3. These include the original images, annotated 
grayscale images, output result images, and overlay images. Based on the visual analysis of these 
images, the misclassified pixels in the UAV imagery are predominantly concentrated near the 
boundaries of the surface structural-layer under construction. These misclassifications are largely 
influenced by interference factors such as tree obstructions and shadows, while the interference from 
vehicles with relatively clear boundaries is comparatively minimal.  
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Fig. 3. Semantic segmentation results of surface structural-layer during construction, achieved using the improved DeepLabV3+ 

model. 

6. Discussion and Conclusions  

This paper addresses the demand for high-precision identification of surface structural-layer in road 
construction. An improved DeepLabV3+ model was proposed for ow-altitude UAV imagery semantic 
segmentation, to provide an intelligent solution for monitoring and evaluating construction progress and 
quality. Compared to traditional manual inspection approaches, lowaltitude UAV imagery offers 
advantages such as high efficiency, low cost, and wide-area coverage. When combined with deep 
learning algorithms, it significantly enhances the efficiency and accuracy of information acquisition and 
processing during the construction phase, thereby expanding the application scope of intelligent 
construction technologies. In terms of model design, this paper introduces two key improvements to the 
DeepLabV3+ model. First, the backbone network is replaced with ResNet‑50 to enhance the model’s 
ability to extract finegrained features and to reduce the risk of overfitting. Second, the CBAM attention 
mechanism is integrated into the ASPP module to improve the model’s focus on boundaries and critical 
regions, thereby enhancing the overall performance of semantic segmentation.  

Through comparative experimental analysis, selecting DeepLabV3+ as the baseline model is deemed 
reasonable, and incorporating the CBAM module into the ASPP section effectively enhances the 
model's performance. In the improved DeepLabV3+ model, the key performance metrics—Mean IoU, 
Overall Acc, and FreqW Acc are increased by 1.92 percent, 0.61 percent, and 1.10 percent, 
respectively.  

In conclusion, the proposed method has achieved high-precision semantic segmentation of surface 
structural-layer during construction, thereby providing data support for intelligent construction 
management.  

However, this method has currently conducted a small-scale experiment only on the construction-phase 
surface structural-layer imagery from the Guangxi Baqiang Road project. Future work will focus on 
optimizing data acquisition strategies to expand the scale of highquality datasets, thereby further 
enhancing the performance of the improved DeepLabV3+ model and providing foundational support for 
the monitoring and assessment of constructionphase surface structural-layer progress and quality.  
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