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Abstract 

Large language models (LLMs) have recently gained attention in construction engineering for their ability 

to interpret technical documents, extract domain-specific information, and support natural language 

interfaces. To mitigate hallucination and improve factual reliability, retrieval-augmented generation 

(RAG) techniques have been widely adopted, enabling LLMs to ground their responses in external 

reference documents such as design codes. However, current RAG-based applications still face 

challenges in performing accurate structural calculations, particularly when precise mathematical 

reasoning and strict code compliance are required. To address these limitations, this paper proposes a 

Retrieval-Augmented Generation-based framework for automated structural calculations, integrating 

semantic retrieval with code-based reasoning and self-verification. The proposed system consists of a 

vector database that stores and retrieves relevant design code provisions and structural equations, and 

a prompt-driven LLM that generates executable Python code along with human-readable reasoning. 

Furthermore, a self-verification mechanism is incorporated to ensure both logical consistency with 

design standards and numerical accuracy of the computed results. The framework was evaluated on 

precast concrete floor slab design scenarios, demonstrating that the integration of code execution (CE) 

and self-verification (SV) significantly improves the reliability of automated structural verification 

workflows. These findings highlight the potential of AI-driven approaches in supporting digital 

construction technologies and enhancing real-time decision-making in structural engineering. 
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1. Introduction 

In construction projects, unforeseen site conditions often necessitate design alterations during the 

execution phase, leading to workflow disruptions and project delays. These changes are often triggered 

by incompatibility between drawings and site conditions, or unplanned scope revisions. When such 

changes occur on-site, the typical industry practice is for the contractor’s field team to submit a formal 

modification request to the structural design office, which then performs structural analysis, checks code 

compliance, and provides feedback. This manual, iterative process not only slows down decision-

making but also increases overall project duration and cost. 

Frequent design changes require repeated compliance checks against complex design codes, leading 

to significant delays and additional costs. Structural engineers must reinterpret drawings, rerun 

calculations, and verify safety and serviceability requirements, often under time pressure during critical 

phases such as precast slab installation. The lack of rapid, automated tools for structural verification 

can further disrupt construction workflows. The automation of structural design review has long been a 

focus in construction engineering. Traditional rule-based systems encode design criteria into 

deterministic logic but often lack flexibility in handling real-world complexities [1], [2]. Recent 

advancements in artificial intelligence, particularly large language models (LLMs) such as generative 



 

 

pretrained transformers (GPT) [3], have shown promise in automating document interpretation and code 

compliance checks [4], [5], [6]. However, standalone LLMs are prone to generating incorrect or 

unsubstantiated responses, a phenomenon known as “hallucination” [7], which limits their reliability in 

safety-critical domains like structural engineering. 

To address these limitations, the Retrieval-Augmented Generation (RAG) framework has been 

introduced [8], allowing LLMs to ground their responses in authoritative documents such as building 

codes and design manuals [9]. While RAG improves factual accuracy, existing RAG-based applications 

in structural engineering are mostly limited to document retrieval or summarization, lacking the ability to 

perform precise structural calculations that require mathematical reasoning and strict code compliance. 

A key challenge is that current LLMs are not inherently equipped to execute the rigorous numerical 

computations essential for structural design [10]. These tasks demand high precision and contextual 

awareness of engineering standards. Moreover, there is a lack of real-time automated systems that can 

both interpret design criteria and perform verifiable structural calculations. 

To address this research gap, this study proposes a Retrieval-Augmented Generation-based framework 

that integrates semantic retrieval with code-based reasoning. The system retrieves relevant design 

provisions, and a prompt-driven LLM generates executable Python code to perform accurate structural 

calculations aligned with engineering standards. The proposed method is evaluated using precast 

concrete floor slab scenarios, demonstrating its effectiveness in automating structural verification tasks 

and supporting real-time decision-making in construction environments. This approach contributes to 

advancing AI-driven automation in structural engineering and provides a scalable foundation for 

integration with Building Information Modeling (BIM) and digital twin technologies, enabling responsive 

and intelligent design verification. 

2. Related works 

2.1. Integrating RAG with LLMs in construction  

Retrieval-Augmented Generation (RAG) has been developed to address the challenge of hallucination 

in LLM outputs by anchoring generated content to verified external sources. This technique combines a 

language model with a retrieval mechanism that pulls relevant information from structured knowledge 

bases. By integrating retrieved context into the response generation process, RAG enables more 

factually grounded outputs based on established references, including building codes and safety 

standards. 

Within the construction domain, RAG has been applied to several data-intensive tasks such as 

document querying, summarizing safety protocols, and analyzing contractual risks. For example, Wu et 

al. [11] presented the RAG4CM framework, which utilizes hierarchical document parsing and user-

preference learning to enhance retrieval accuracy across multiple data sources, yielding improved 

performance over conventional systems. Uhm et al. [12] demonstrated that RAG-GPT, when evaluated 

by practitioners and field personnel, outperformed standard LLMs in delivering accurate and context-

aware safety information, making it a valuable tool for safety management and training. Additionally, 

Tran et al. [13] developed a system known as the Construction Safety Query Assistant (CSQA), 

combining document interpretation with interactive feedback to streamline access to safety regulations. 

Beyond safety-related applications, RAG-based systems have shown promise in contract analysis. 

Shuai et al. [14] introduced C3RAG, which draws from legal precedent databases to offer context-

sensitive evaluations of contract risks in construction, demonstrating strong results in terms of citation 

relevance and clarity. In the field of geotechnical engineering, Qian et al. [15] designed a multi-hop RAG 

solution that supports retrieval of site-specific regulations and geological data, providing real-time 

assistance for planning tasks.  

These examples reflect the expanding role of RAG in delivering contextually precise and factually 

grounded outputs for construction-related tasks. However, most applications have been limited to textual 

understanding and retrieval. There remains a notable gap in leveraging RAG for quantitative tasks such 

as structural calculations, where both semantic comprehension and mathematical accuracy are critical. 

Few studies have explored LLM-driven automation in this area, particularly those that involve not only 



 

 

retrieving and interpreting structural formulas but also executing them within context. This reveals a 

significant opportunity to extend RAG methodologies into the realm of numerical design verification in 

civil engineering. 

2.2. Code-based approaches for improving LLM mathematical reasoning 

Enhancing the mathematical reasoning capabilities of large language models (LLMs) has been a 

significant area of focus, particularly through the refinement of prompt strategies, the integration of 

external computational tools, and targeted fine-tuning. One of the most influential techniques in this 

domain is Chain-of-Thought (CoT) prompting, which promotes a step-by-step breakdown of complex 

problems, allowing the model to process intermediate reasoning stages more effectively. This method, 

introduced by Wei et al. [16], has notably improved LLM performance in tasks involving multi-step 

calculations by making the reasoning process explicit and transparent. Expanding on this concept, Self-

Consistency [17] proposes generating multiple reasoning trajectories and selecting the most coherent 

or consistent output, thereby boosting the robustness of the model's conclusions. 

Recognizing the inherent limitations of LLMs in performing precise numerical computations, researchers 

have explored mechanisms for external code-based verification. Zhou et al. [18] introduced a framework 

where GPT-4 generates Python code snippets as part of its response, enabling verification of its own 

outputs through actual execution. This method effectively bridges the gap between natural language 

reasoning and formal numerical validation. Another promising direction has involved leveraging external 

computing environments, such as the Python Read-Evaluate-Print Loop (REPL). Yamauchi et al. [19] 

demonstrated that models like ChatGPT can enhance their accuracy by generating code that is 

executed externally, reducing reliance on the model’s internal, and sometimes unreliable, arithmetic 

functions. This approach, akin to the "Toolformer" paradigm, clearly delineates reasoning from 

computation, minimizing hallucinations and improving factual correctness. 

Building further on CoT, Program-of-Thought (PoT) prompting, introduced by Chen et al. [20], explicitly 

formulates reasoning as a programmatic structure. Instead of relying on internal computations, PoT 

prompts the model to develop a logical sequence that is then externally executed. This clear division 

between logic formulation and computational execution has shown substantial promise, especially in 

tasks requiring formal verification. Collectively, these methodologies have established a strong 

foundation for advancing LLM-based mathematical reasoning. However, most approaches remain 

constrained by limitations in consistency, error resilience, and comprehensive validation, particularly 

when tackling complex multi-step computations that require both symbolic reasoning and precise 

numerical execution. 

2.3. Research Gap 

Although numerous studies have demonstrated the capabilities of LLMs in tasks such as document 

interpretation, safety management, and regulatory text analysis within the construction sector, most of 

these works have concentrated on symbolic reasoning or information retrieval rather than numerical 

computation. While RAG-based methods have advanced the factual grounding of language models, 

their use in structural design verification remains fundamentally limited, particularly when accurate 

mathematical execution and domain-specific compliance are required. 

Most current approaches depend on translating rules into logic-based systems or interfacing with 

external computational tools, falling short of delivering a fully integrated solution where design 

interpretation, formula retrieval, and direct computational execution are managed within a unified 

framework. Furthermore, many of these methods stop at retrieving and summarizing design standards, 

without extending into automated calculation or result validation based on those standards. 

To the best of the authors’ knowledge, this study is among the first to tackle the automation of structural 

calculation tasks through a Retrieval-Augmented Generation framework combined with code-based 

reasoning and self-verification mechanisms. By enabling language models to not only understand and 

retrieve design requirements but also autonomously perform and validate structural computations, this 

research addresses a critical gap in current AI applications in civil engineering. The proposed approach 

demonstrates how integrating retrieval with executable code generation can improve both the accuracy 



 

 

and reliability of automated structural verification, offering a new direction for AI-driven design validation 

systems. 

3. Proposed method 

3.1. Overview of the proposed framework 

Despite recent advancements in applying LLMs to various engineering problems, structural calculations 

in practice are still largely conducted through manual, spreadsheet-based processes. Engineers are 

required to interpret complex design codes, identify and apply appropriate formulas, and repeatedly 

validate their results for compliance, often under tight deadlines and with high demands for accuracy. 

These procedures are repetitive, prone to error, and mentally taxing, especially when dealing with 

voluminous and intricate regulatory documents. While LLMs have shown strong capabilities in 

processing natural language, their application to tasks involving precise numerical validation and strict 

adherence to engineering standards remains limited. 

This study introduces an AI-driven framework intended to automate structural calculations, focusing on 

the design and verification of precast concrete floor panels. To replicate real-world workflows, we 

structured the system around typical spreadsheet-based calculation sequences, using multi-turn queries 

that mirror standard verification procedures. As depicted in Fig. 1, the framework consists of two primary 

modules: (1) a RAG-based retrieval system that builds a vectorized database from design standards 

and structural formulas, enabling the retrieval of relevant provisions; and (2) a code-generating LLM 

component that outputs executable Python code capable of performing the required calculations. The 

system is designed to provide rapid, regulation-compliant structural analysis, and while this study 

focuses on precast panels, the architecture is flexible enough to accommodate other structural 

applications. 

 

Fig. 1. System architecture of the proposed method. 

3.2. RAG-based structural calculation framework 

The foundation of the proposed method lies in a semantic retrieval pipeline, which extracts pertinent 

design provisions and associated formulas from standard code documents. This enables LLM to access 

precise engineering references necessary for accurate calculations. Domain-specific documents, 

including the Highway Bridge Design Standard (2010) and the Korea Structural Concrete Design Code 

(2003), were digitized through Mathpix OCR [21], producing LaTeX-encoded content suitable for 

downstream processing. 

To enhance retrieval efficiency, preprocessing steps were applied to ensure that formulas and their 

variable definitions were co-located within the same document segments. Frequently, variables were 

defined separately from their equations in the original standards; these were reorganized so that all 

relevant details—symbols, units, and descriptions—appeared together, reducing ambiguity during 

retrieval and interpretation. 



 

 

In addition to the code documents, a custom formula database was constructed in JSON format to 

capture structural equations not directly stated in the standards. Each entry in this database included 

not only the mathematical expressions but also comprehensive metadata such as units and explanatory 

notes. These entries were segmented into coherent text chunks using LangChain utilities [22], translated 

into English via gpt-4o-mini-2024-07-18 [23], and embedded using OpenAI’s text-embedding-3-large 

model [24]. The final vector database stored both regulatory text and formula data, enabling dense 

retrieval via cosine similarity. 

Upon receiving a structural query, the system retrieves the top-k most semantically relevant document 

chunks. Unlike traditional keyword-based retrieval, this dense method matches query intent with 

document meaning, ensuring higher relevance even when terminology varies [25]. The retrieved 

information, along with the user’s question and contextual data from previous steps, forms a structured 

prompt for the LLM. 

3.3. LLM-based code generation and execution 

Once the relevant provisions and formulas have been retrieved, the LLM generates a detailed structural 

calculation response. Each structured prompt includes the user query, the retrieved design code 

content, and a generation template that specifies initial values, cumulative variables, and contextual 

assumptions such as loading conditions and material properties. 

The prompt instructs the LLM to reference the retrieved data when selecting formulas and to define each 

variable explicitly, including units. The model is guided to produce a Python code block that performs 

the complete calculation, ending with a print() statement that outputs the result. The response format is 

standardized for clarity and to ensure consistency across different queries. 

The generated code is then executed outside the model, and the numerical result is appended to the 

final response. This execution step ensures that the LLM’s reasoning aligns with actual computational 

outputs, improving the accuracy and reliability of the structural calculations. By combining code 

generation with real-time execution, the framework achieves a robust and repeatable method for 

verifying complex engineering computations. 

3.4. Self-Verification module for intermediate validation 

To further improve the trustworthiness of the system, a self-verification (SV) module was implemented. 

This component enables the LLM to review its own outputs by checking logical consistency and 

recalculating values where necessary. The SV process involves two stages: first, assessing whether the 

reasoning and formula selection align with the retrieved standards; and second, verifying the numerical 

accuracy by re-executing the code and confirming unit consistency. 

A specialized verification prompt guides the model through this process, instructing it to preserve correct 

answers or revise those that deviate from the expected standards. The SV module ensures that only 

validated and contextually accurate results are presented, enhancing the system’s overall reliability in 

safety-critical applications. 

4. Experiments 

4.1. Experimental settings 

This study aimed to evaluate the effectiveness of the proposed framework in automating structural 

design calculations, with a primary focus on the accuracy of the generated answers. The evaluation was 

conducted using a set of 50 structured queries derived from an actual Excel-based structural calculation 

sheet for precast concrete floor panels. Each query corresponds to a key step in a typical structural 

verification process, such as minimum thickness checks, load combination evaluations, and strength 

assessments for moment and shear. 

A total of five model configurations were compared in the experiments, consisting of four baseline 

configurations and the proposed framework. The baseline models were incrementally constructed by 

adding different functional modules to a basic RAG-based generation pipeline: 

• Baseline 1: RAG-based generation prompt only. 



 

 

• Baseline 2: RAG-based generation + Formula Database. 

• Baseline 3: Baseline 2 + SV. 

• Baseline 4: Baseline 2 + CE. 

• Proposed method: Baseline 2 + SV + CE. 

The retrieval system was constructed using OpenAI’s text-embedding-3-large model, with dense 

embeddings applied to both design code provisions and formula data. The vector database was created 

from two official Korean design code documents, the Highway Bridge Design Standard (2010) and the 

Korea Structural Concrete Design Code (2003), along with a manually curated formula database in 

JSON format. The design code documents were digitized using the Mathpix OCR tool and subsequently 

translated into English via gpt-4o-mini-2024-07-18. The embedding and storage of the entire content 

into the vector database were performed with a chunk size of 1024 tokens and a chunk overlap of 256 

tokens. The top-5 most relevant chunks were retrieved for each query using dense similarity search. 

Regarding the generation process, the proposed framework utilized gpt-4o-2024-08-06 with 

temperature set to 0 to ensure deterministic and consistent behavior. The entire experimental 

environment was implemented using Python 3.9.19 and LangChain, operating in a local Jupyter 

Notebook environment. All computations were performed via the OpenAI API on a CPU-only machine 

without GPU acceleration. 

4.2. Experimental results 

The experiment compared the accuracy of various model configurations depending on the inclusion of 

key functional modules. The second experiment examined the robustness of the proposed system 

across different structural scenarios by varying slab dimensions and material properties. In these 

experiments, an answer was considered correct if the relative error compared to the ground truth was 

within a tolerance of 0.1%. 

As shown in Table 1, the baseline model without any additional modules (Baseline 1) exhibited an 

accuracy of 40%. The introduction of a formula database (Baseline 2) improved the accuracy to 50%. 

When Self-Verification (Baseline 3) and Code Execution (Baseline 4) modules were added individually, 

the accuracy increased to 54% and 62%, respectively. Notably, the proposed framework, which 

integrates Formula Database, Self-Verification, and Code Execution, recorded the highest accuracy of 

76%. 

Table 1. Accuracy Comparison of RAG-Based Structural Calculation Models with Formula Database, 
Self-Verification, and Code Execution Modules. 

Model Formula DB Self-Verification Code Execution Accuracy 

Baseline 1(Prompt only)    40% 

Baseline 2(B1 + Formula DB) ✔   50% 

Baseline 3(B2 + SV) ✔ ✔  54% 

Baseline 4(B2 + CE) ✔  ✔ 62% 

Proposed Method(B2 + SV + CE) ✔ ✔ ✔ 76% 

 

5. Discussion 

This section analyzes the performance differences among the tested model configurations and 

highlights how the integration of code execution and self-verification modules enhances both the 

precision and dependability of automated structural computations. The experimental outcomes clearly 

show that while a basic RAG-based generation framework can effectively retrieve and summarize 

relevant code provisions, it lacks the capability to conduct accurate structural calculations, which require 

strict numerical fidelity and compliance with established standards. 

The models that relied solely on RAG retrieval or incorporated a formula database exhibited limited 

success in producing correct results. For instance, Baseline 1, which did not include any additional 



 

 

modules for formula access or numerical validation, frequently produced flawed outputs due to 

misinterpretation of design requirements or incorrect formula usage. By adding a Formula Database in 

Baseline 2, the system gained access to a broader set of equations, which led to moderate 

improvements. However, the absence of computational validation meant that the generated answers 

still diverged from expected numerical outcomes. 

Introducing Self-Verification in Baseline 3 allowed the system to identify and correct some logical errors 

and numerical inconsistencies within its responses. Nevertheless, without executing the calculations 

directly, the scope of correction was limited, particularly in handling precise decimal values. As illustrated 

in Fig. 2, when responding to the same structural query, Baseline 3 produced an answer that deviated 

from the exact result due to rounding issues and the lack of numerical validation via code execution. 

The proposed method, on the other hand, accurately computed and validated the result by executing 

the embedded Python code, demonstrating a higher level of numerical precision. 

Baseline 4, which integrated Code Execution, demonstrated a more significant reduction in numerical 

inaccuracies by relying on the actual execution of generated code, thereby ensuring the numerical 

soundness of outputs. The Proposed Method, combining both Self-Verification and Code Execution, 

achieved the highest accuracy rate of 76%. This synergy leverages the strengths of both modules: code 

execution guarantees that calculations follow strict computational logic, while self-verification provides 

an additional safeguard by checking reasoning and unit consistency against the retrieved design 

provisions. In cases involving multi-step reasoning, such as determining reinforcement requirements or 

load-induced stresses, this dual-layered approach was effective in detecting intermediate errors and 

correcting them before presenting the final output. 

 

Fig. 2. Comparison of structural calculation results for the same query between Baseline 3 and the 
proposed method. 

Despite these strengths, the system also exhibited some limitations. Issues related to unit handling were 

observed in a few scenarios, particularly when retrieved equations used varying unit conventions or 

when the model failed to standardize outputs according to predefined formats. Additionally, the 

effectiveness of the self-verification process varied depending on the complexity of the query and the 

clarity of the retrieved context, sometimes resulting in inconsistent revisions. 



 

 

6. Conclusion 

This research introduced a Retrieval-Augmented Generation framework designed to automate structural 

calculations for precast concrete floor panels, incorporating both code execution and self-verification 

mechanisms to enhance accuracy and reliability. The proposed system was developed to address the 

shortcomings of traditional RAG-based approaches, which often lack the numerical precision and 

compliance enforcement necessary for structural engineering tasks. 

Through a series of comparative experiments, the framework demonstrated superior performance over 

baseline models, achieving an accuracy of 76% across 50 structured queries. While models that relied 

solely on retrieval or symbolic reasoning struggled with consistency and computational correctness, the 

integration of executable code generation ensured that numerical outputs were validated against formal 

calculation logic. The self-verification module further improved the robustness of the system by providing 

an internal review of reasoning steps and unit alignment, thereby reducing the likelihood of errors. 

Looking forward, the system has the potential to be extended and integrated into digital construction 

platforms such as Building Information Modeling (BIM) and digital twin environments. By enabling real-

time updates and verifications as design changes occur, this approach could play a key role in advancing 

AI-driven workflows within the construction industry. Future developments may include refining unit 

handling, expanding the formula database, and improving context interpretation for more complex 

engineering applications. 
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