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Abstract  

In recent years, AI has been increasingly utilized in the construction industry to address labour shortages 

and improve efficiency. While AI applications in construction management and site operations are 

advancing, their use in architectural design remains limited. This study proposes a novel method for 

evaluating floor plans quantitatively by simulating NPC (Non-Player Characters) within a 3D 

environment. 

Using a BIM-based CAD software and game engine, we developed a system that enables NPCs to 

navigate a 3D floor plan and interact with furniture and spaces. The system integrates need-based AI-

driven NPC behaviours to assess spatial efficiency and usability. Data is transferred between CAD and 

the simulation environment via an external data-sharing platform, allowing real-time updates and 

automated synchronization. 

NPCs are designed with human-like needs and behaviour patterns, implemented using an AI model 

inspired by an existing need-based decision-making framework. Each NPC autonomously moves 

through the environment, interacting with designated objects based on predefined parameters such as 

hunger, work tasks, and movement efficiency. This allows for quantifying accessibility, privacy, and 

spatial bottlenecks. 

The study conducted simulations on simple residential and office layouts, measuring average travel 

distances and comparing movement complexity through a calculated movement distance ratio. Results 

suggest that this method provides valuable insights for optimizing spatial design, particularly in larger 

environments such as office spaces. 

Future work aims to refine the system by incorporating room-specific usage frequency analysis, 

subjective user-experience modelling, and diverse NPC profiles to simulate different lifestyles and work 

behaviours. This research contributes to advancing AI-based architectural evaluation tools, bridging the 

gap between traditional CAD-based design and real-world usability assessment. 
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1. Introduction 

AI use in the construction industry has greatly increased in recent years, with a market value estimate 

of $2.5 Billion dollars in 2022 according to Global Market Insights [1]. It is currently being used in Field 

Management, Project Management, etc… to streamline the construction process. However, in terms of 

planning and designing the layout of the architecture, there exists relatively fewer research articles, and 

much less actual field-tested cases of AI being used. While its applications in field and project 

management are well documented, AI-driven layout planning and evaluation remain largely unexplored. 

This gap stems from the scarcity of behaviourally relevant datasets and the complexity of defining "good" 

layouts beyond static metrics. Addressing this, our study introduces a needs-based simulation approach, 

aiming to provide dynamic, human-cantered floor plan evaluations.  



 

 

2. Literature Review 

Research on the quantitative evaluation of spatial configurations can be traced back to the development 

of Space Syntax by Hillier and Hanson (1984) [2]. Space Syntax introduced a systematic methodology 

for analyzing spatial layouts using graph-based representations, quantifying properties such as 

integration, connectivity, and visibility to predict human movement patterns and social interactions within 

built environments. Although primarily applied to two-dimensional plans, the underlying principles of 

accessibility, visibility, and movement dynamics remain crucial even today. This study builds upon these 

foundational ideas by extending them into dynamic, three-dimensional simulations, where the impact of 

layout configurations is evaluated through agent-based interactions rather than static metrics. 

Subsequent research shifted toward automating the generation of floor plans. Early computational 

approaches include the work of Michalek et al. (2002), who introduced a genetic algorithm that produced 

alternative floor plan layouts based on user-defined constraints, demonstrating the promise of 

optimization techniques in supporting architectural design [3]. Later, Merrell et al. (2011) proposed a 

data-driven framework that learned spatial rules from existing architectural datasets, enabling the 

generation of new, functionally plausible layouts by capturing implicit human design logic [4]. Nauata et 

al. (2021) further advanced this field by applying deep learning models to predict room arrangements 

that reflect human-like spatial reasoning, effectively modelling adjacency preferences and circulation 

patterns [5]. However, despite these technological advances, most studies have remained focused on 

generation rather than evaluation. Generated floor plans often lack the nuanced usability, inhabitability, 

and design judgment found in human-designed layouts, limiting their practical adoption in real-world 

projects. 

In parallel, the broader construction industry has seen an increasing integration of AI technologies. As 

Ali (2023) points out, Machine Learning (ML), Artificial Neural Networks (ANN), Deep Learning (DL), 

Computer Vision (CV), and Robotics have been applied across construction management, safety 

monitoring, and remote site supervision [6]. For instance, ANN has been utilized for construction cost 

forecasting, CV and DL for machinery activity monitoring and safety enforcement, and Natural Language 

Processing (NLP) for analysing accident reports. These applications highlight the growing trust in AI 

systems to not only perform predictive tasks but also to support decision-making in dynamic and 

uncertain environments, suggesting the feasibility of applying similar approaches to spatial evaluation 

tasks. 

Recent facility layout research has recognized the importance of simulation-based evaluation under 

uncertainty. Garcia et al. (2018) emphasized the need to incorporate dynamic simulation models during 

the early stages of layout design to progressively manage and reduce uncertainties in manufacturing 

environments [7]. Their work supports the idea that simulation, rather than static analysis alone, can 

better inform layout decisions, particularly under conditions of uncertainty about human behaviour or 

environmental variability. The methodology aligns closely with the current study’s approach of using 

agent-based simulation to dynamically test layout effectiveness. 

While generative design algorithms and AI-based planning systems have matured, there remains a 

notable gap in the evaluation of layouts through simulated occupation and behavioural analysis. By 

integrating foundational concepts from Space Syntax, modern generative modelling, AI applications in 

construction, and simulation-based optimization strategies, the present study proposes a novel 

framework for dynamic, quantitative floor plan evaluation using needs-driven NPCs in a 3D environment. 

3. Research Goals and Objectives 

The primary goal of this research is to establish a novel methodology for evaluating architectural floor 

plans through simulation-based analysis. This evaluation method is intended to serve as a foundational 

framework for future studies in automated floor plan generation, especially those involving artificial 

intelligence and behavioural modelling. While various algorithmic approaches have been proposed for 

generating architectural layouts, a key limitation remains: the functional performance of these layouts is 

often not assessed in dynamic, human-centric contexts. This research addresses this gap by introducing 

an AI-driven simulation environment in which virtual agents—Non-Player Characters (NPCs)—navigate 

and interact within 3D representations of architectural layouts. 



 

 

The core hypothesis is that the most accurate assessment of a floor plan’s usability and spatial efficiency 

can be achieved by observing how simulated occupants behave within the space. Rather than relying 

solely on static geometrical metrics, this study proposes a behavioural evaluation model, wherein 

autonomous NPCs operate according to human-like needs, perform context-driven actions, and 

generate data that reflects the experiential quality of the layout. 

To achieve this goal, the research is structured around the following specific objectives: 

⚫ Development of a 3D Simulation Environment: 

Construct a simulation framework that integrates Building Information Modelling (BIM) data with a 

game engine, allowing for accurate spatial representation and dynamic updates. 

⚫ Implementation of Need-Based NPC Behaviour: 

Design and implement an AI model that drives NPC behaviour based on fluctuating internal states 

(e.g., hunger, fatigue, focus), enabling realistic decision-making and movement patterns within 

the simulated environment. 

⚫ Design of an Evaluation and Logging System: 

Develop scripts to monitor and record NPC interactions with the environment, including travel 

distances, interaction durations, and object utilization frequency. These logs provide quantifiable 

data on layout performance. 

⚫ Data Structuring for AI Learning: 

Format the collected simulation data into structured datasets suitable for training machine 

learning models. These datasets are intended to support future research in predictive layout 

evaluation or generative design systems. 

Each objective builds upon the previous step to construct a coherent system in which architectural 

layouts can be tested and scored based on lived simulation. The expected outcome is a functional 

pipeline that not only enables the evaluation of existing floor plans but also contributes to a feedback 

mechanism for automated design tools, ultimately bridging the gap between generative algorithms and 

human-centred spatial validation. 

4. Methodology 

This study employs a simulation-based methodology using a hybrid workflow between the BIM Software 

and the game engine, with the objective of evaluating the functional performance of architectural floor 

plans. The methodology integrates accurate BIM-based modelling, needs-driven AI behaviour, and real-

time agent-based simulation to assess spatial usability. The following subsections detail the 

implementation process. Figure 1 shows the workflow of this research. 

 

Fig. 1 The Flow of the System Created 



 

 

4.1.  Floor Plan Modelling and Data Transfer 

   

Office Layout A Office Layout B Office Layout C 

Fig. 2 Office Layout Model used in the Simulations 

The architectural floor plans used in this experiment are created in the BIM software to ensure real-

world dimensional accuracy and compatibility with professional architectural workflows. The BIM models 

are exported into an open-source data exchange platform designed for exporting models, to seamlessly 

transition between design and simulation environments. Figure 2 shows the 3 office layouts this research 

was carried on. 

In the game engine, a receiver script is embedded in the simulation scene, which automatically 

synchronizes changes made in Revit. This ensures that updates to the architectural layout (e.g., room 

geometry or furniture placement) are reflected in real-time during the simulation without the need for 

manual re-imports. Figure 000 shows the 3D model of the 3 office layouts quantified in this research. 

4.2. Navigation Mesh Setup 

To enable NPC movement, a NavMesh (Navigation Mesh) is baked onto all floor surfaces in the scene. 

A NavMesh is a simplified representation of the traversable areas of a floor plan, allowing AI agents to 

calculate viable paths from point A to point B. Meanwhile, all furniture objects and large obstacles are 

marked as NavMesh Obstacles, which are excluded from the traversable area and serve to dynamically 

block or redirect NPC navigation. Together, this system enables agents to simulate realistic walking 

behavior while avoiding collisions with spatial elements. 

4.3. Needs-Based AI Implementation 

Each NPC is controlled by a needs-based AI model, inspired by behavioral systems used in simulation 

games such as The Sims. This AI system is based on a GitHub project “UnityTutorial_SimsStyle” by Iain 

McManus [8]. NPCs maintain internal states such as hunger, fatigue, and productivity that fluctuate over 

time. The AI periodically selects the need with the highest priority and searches for the nearest Smart 

Object capable of satisfying that need. An example of the NPC’s search priority is shown in Figure 3. 

 

Fig 3 How Smart Objects Behave in the Simulation 



 

 

4.4. Smart Object System 

To reduce computational overhead, all interactable elements in the scene (e.g., furniture) are 

implemented as Smart Objects. A Smart Object contains metadata about available interactions, 

interaction points, and behavioural effects. By centralizing interaction logic within objects rather than 

within the agents, the system remains modular, scalable, and efficient for simulation across large 

layouts. When the Smart Object is interacted on, it restores the internal parameters according to its role. 

As a fridge or a sofa, it restores the corresponding parameters hunger and fatigue. The Smart Object 

also communicates to the NPC to appeal to their state, as shown in Figure 000.  

4.5. NPC Behaviour Logging 

 Each NPC is equipped with a set of scripts to log behavioural data throughout the simulation. The 

following variables are tracked: 

⚫ Travel-to-Straight Distance Ratio Analysis 

This metric provides a basis for understanding the navigational complexity between furniture 

objects. This ratio is achieved by dividing the travel distance of the NPC from one furniture object 

to another, by the distance as the crow flies. High ratios may indicate bottlenecks or inefficient room 

connectivity. The equation is as follows. 

𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
= 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑜 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 

 (1) 

⚫ Visibility Log Analysis 

Visibility data quantify the exposure of objects during NPC navigation. Low visibility scores for 

specific rooms (e.g., restrooms, meeting rooms) suggest preserved privacy, while high visibility may 

imply insufficient spatial partitioning. 

⚫ Heatmap Analysis 

Heatmaps highlight areas with concentrated or sparse NPC activity. High-traffic zones may indicate 

functional bottlenecks, while underutilized areas may reveal wasted space. 

 Logs are saved in CSV format and linked to object pairs, forming the basis for evaluating layout 

efficiency. Example scenes from the simulations are shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Example of the NPC Simulation in Office Layout A 



 

 

To summarize, the simulation is a Unity-based evaluation system designed to assess the spatial 

usability of architectural floor plans by using AI-driven agents (NPCs) that autonomously interact with 

environmental objects called SmartObjects. Each NPC selects interactions based on internal states 

such as hunger or fatigue. These SmartObjects represent furniture or appliances and offer context-

specific interactions (e.g., sitting, eating), defined by their spatial coordinates and stat effects. 

As NPCs navigate the environment, their travel paths are logged in detail. The system records both the 

actual traveled distance and the theoretical straight-line distance between SmartObjects. This data is 

used to compute the ratio of traveled to straight distance for each object pair. Visibility and Heatmap 

data are also logged to further quantify the floor plan into raw data. 

In the future, this approach enables the automated, quantitative evaluation of layout efficiency, 

identifying spatial bottlenecks and informing iterative design improvements within simulated architectural 

environments. 

5. Results and Findings 

The quantification of the floor plans resulted in multiple behavioural data logs, which were retained in 

CSV format for each NPC. Specifically, both travel distance logs and visibility logs were recorded in this 

manner (see Figure 5 and Figure 6, respectively). Additionally, heatmap data representing spatial 

activity distribution was logged and visualized in a graph format (see Figure 7, Figure 8, Figure 9). 

In addition to evaluating individual movement patterns, this study highlights the broader potential of floor 

plan quantification based on NPC behavioral data. 

 

Fig. 5. Example of a Visibility Log from an NPC 

 

Fig. 6. Example of a Travel Log from an NPC 

 



 

 

 

Fig. 7. Heatmap of NPC Stay Duration for Office Layout A 

 

Fig. 8. Heatmap of NPC Stay Duration for Office Layout B 

 

Fig. 9. Heatmap of NPC Stay Duration for Office Layout C 



 

 

Firstly, the Travel-to-Straight Distance Ratio provides a numerical index of spatial navigability, enabling 

comparative evaluation across different layouts. High ratios systematically signal layout inefficiencies 

such as circuitous routes, dead-ends, or bottlenecked passageways. This metric, when aggregated 

across multiple NPCs and scenarios, offers a robust quantitative foundation for spatial optimization. 

Secondly, the Visibility Logs introduce a method to objectively assess privacy levels within a floor plan. 

Unlike traditional methods reliant on designer intuition, visibility metrics allow for numerical 

benchmarking of how well private zones are shielded from public view. By adjusting thresholds for 

acceptable visibility levels, designers can fine-tune layouts to balance openness and seclusion 

according to intended space functions. 

Thirdly, Heatmap Data transforms qualitative impressions of space usage into measurable activity 

distributions. By aggregating time-stamped location data, it becomes possible to statistically identify 

underutilized areas, traffic bottlenecks, and critical spatial intersections. This information supports data-

driven spatial reconfiguration, optimizing not only functionality but also user experience. 

From the 3 heatmap graphs, we can see that certain cells have a higher concentration of NPC stay 

duration than others. This, we can assume, is caused by a form of bottleneck or high use furniture 

placement in a limited area. For example, for Office Layout C, we can assume that a bottle neck has 

formed due to a small opening between the 2 rooms. This is proof that quantification of a floor plan can 

be useful in determining the characteristics of a floor plan simply from raw data. These data combined 

could be used to train AI to place furniture in a way that it won’t cause these types of problems, simply 

by tweaking the reward system when machine learning, for example.  

However, certain limitations must be acknowledged. The current quantification framework primarily 

measures physical accessibility, visual exposure, and occupancy density, but does not yet incorporate 

qualitative aspects such as user satisfaction, acoustic comfort, or emotional response. Furthermore, 

while the behavioural models approximate human movement, they do not fully replicate complex social 

behaviours, such as group dynamics or spontaneous collaboration. 

Overall, this study demonstrates that floor plan quantification using needs-driven NPC simulations 

enables a multi-dimensional, empirical evaluation of spatial performance. Future research should aim 

to integrate additional behavioural, environmental, and subjective parameters to build a truly holistic, AI-

supported layout assessment framework. 

6. Discussion 

This research demonstrates that floor plan quantification through needs-driven NPC simulation offers a 

new perspective on architectural evaluation. By moving beyond static spatial measurements, it enables 

dynamic, behavior-based insights into layout efficiency, privacy, and usability. However, there are 

several directions in which this framework can be extended to achieve even greater fidelity and utility. 

Firstly, future versions of the system should expand the range of behavioural data logs. In addition to 

movement paths and visibility, logging elements such as interaction frequency, communication attempts 

between NPCs, time spent in collaborative versus individual activities, and even simulated emotional 

responses (e.g., frustration from congestion) could significantly enrich the dataset. This would enable a 

multi-dimensional analysis of not only spatial efficiency but also user experience quality within the 

environment. 

Secondly, integrating machine learning and advanced AI techniques presents a promising pathway. 

Once a sufficiently large and diverse dataset of NPC behavioural patterns and corresponding layout 

characteristics is accumulated, supervised learning models could be trained to predict spatial 

performance metrics directly from floor plan features. Reinforcement learning algorithms could also be 

employed to iteratively adjust floor plans, optimizing them based on simulation feedback toward 

objectives such as minimizing congestion, maximizing accessibility, or enhancing user satisfaction. 

Ultimately, this approach could lead to an autonomous layout refinement system: a closed feedback 

loop where floor plans are generated, simulated, evaluated, and iteratively improved with minimal human 



 

 

intervention. By combining simulation-based quantification with data-driven optimization, architectural 

design could become increasingly empirical, responsive, and user-centred. 

Nonetheless, careful attention must be paid to preserving human design sensibilities and context-

specific needs, ensuring that optimization does not compromise aesthetics, cultural appropriateness, or 

occupant well-being. Balancing quantitative efficiency with qualitative richness remains a critical 

challenge for the future of AI-assisted architectural design. 
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