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Abstract  

Large Language Models (LLMs) are increasingly being explored for robotics applications, enabling more 

natural and intuitive communication between humans and machines. In the construction industry, where 

automation has lagged behind other sectors and the workforce often lacks specialized robotics training, 

LLMs offer a promising solution for improving human-robot interaction. However, most existing 

implementations rely on cloud-based processing, which introduces challenges such as network latency, 

unreliable connectivity at remote sites, and concerns over security and privacy when transmitting 

sensitive project data. These limitations make cloud-dependent LLMs impractical for real-world 

construction environments, which are dynamic and unpredictable, requiring robust and responsive 

systems. With recent improvements in model efficiency, LLMs are becoming lighter and with better 

performance, making local execution on edge devices increasingly feasible. This study investigates the 

feasibility of deploying LLMs entirely on-device for construction robotics. We propose a locally executed 

framework that processes multimodal inputs such as speech and vision, directly on construction robots. 

By eliminating reliance on external servers, this approach ensures close to real-time responses, greater 

autonomy, and enhanced resilience in bandwidth-constrained settings. The research describes the 

framework, hardware integration, and the application of straightforward natural language prompts to 

enable practical multimodal processing in field conditions. Our results demonstrate how locally executed 

LLMs can provide a robust, responsive, and accessible interface for human-robot collaboration in 

construction. Additionally, we demonstrate in a case study how few-shot prompting can be used within 

our framework to enable a Local Intelligent Safety Assistant (LISA) that inspects work areas, interacts 

with workers in real time, and helps ensure compliance with on-site safety measures. 
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1. Introduction 

The construction industry is adopting technological solutions to address challenges such as safety risks, 

labor shortages, and project complexity [1]. Robotics and machine learning (ML) are increasingly 

integrated into construction workflows to enhance efficiency and safety. While traditional ML has been 

successfully applied in different construction domains [2], its reliance on application-specific training and 

extensive data gathering and pre-processing makes it time-consuming and inflexible for dynamic 

construction environments [3]. For instance, ensuring compliance with safety standards using ML 

models typically involves training algorithms on labelled data specific to each application, such as PPE 

(personal protective equipment) usage, making them less adaptable to unforeseen scenarios [4]. This 

limitation becomes particularly evident in dynamic construction sites where tasks and risks vary 

significantly, and it has become a barrier to adoption in the sector. Another barrier is the lack of intuitive 

human-machine interfaces (HMI) in current robotics solutions [5]. Conventional control methods often 

demand technical expertise beyond that of many on-site workers, hindering effective collaboration and 

technology adoption. 



 

 

Large Language Models (LLMs) offer a promising alternative to the limitations of traditional ML 

approaches in construction automation, as well as improving Human-Machine Interaction (HMI) on-site 

[6]. Unlike conventional ML systems, LLMs demonstrate remarkable generalizability and can perform 

complex reasoning tasks with minimal additional training, including zero-shot applications [7]. LLMs can 

also significantly enhance HMI in construction settings as they inherently possess excellent natural 

language interfaces, reducing the technical expertise required from operators, and their ability to 

integrate contextual information makes them well-suited for the dynamic conditions of construction 

environments. These versatile capabilities are increasingly being applied to various use cases within 

the construction industry [8]. Initially, LLMs were too large and resource-intensive for practical on-site 

deployment, requiring cloud-based solutions with high-performance GPUs that depend on a reliable 

internet connection [9], [10]. Construction sites, particularly those in remote locations or within structures 

with high signal attenuation, frequently experience connectivity challenges and bandwidth constraints 

that make cloud-dependent systems unreliable [11]. The latency involved in transmitting data to cloud 

servers and receiving responses can also compromise real-time applications. Recent advances, such 

as knowledge distillation, have enabled smaller, more efficient LLMs that maintain strong performance 

and can run locally on edge devices [12].  

This raises a compelling question: How close are we to having an LLM capable of providing reliable, 

human-level reasoning for complex tasks in the construction industry, while also being lightweight 

enough for deployment on local edge devices? Achieving this could significantly advance the capabilities 

of construction robotics and expand the practical use of autonomous systems in complex, real-world 

environments. This paper investigates the potential of locally executed LLMs as an alternative to 

traditional ML to improve HMI and for safety applications in construction robotics. We present the Local 

Intelligent Safety Assistant (LISA), a framework designed to process multimodal inputs and deliver 

actionable safety insights based on user-defined guidelines with few-shot prompting. By focusing on 

scenarios like PPE compliance and safety advice, we assess whether local LLMs can offer a viable, 

adaptable, and easy-to-implement solution compared to traditional ML approaches. 

2. Literature Review 

This section provides a review of literature relevant to deploying large language models in robotics with 

a focus on edge computing implementation, as well as robotics in construction safety applications. The 

review looks into current approaches, identifies gaps, and establishes the foundation for our research 

contribution. 

2.1. Large Language Model for Robotics 

Recent surveys and review articles, including those by Zeng et al. [13], Kim et al. [14], and 

Kawaharazuka et al. [15], demonstrate the potential of large language models (LLMs) in robotics, 

particularly in enhancing adaptable reasoning and human–machine interaction. However, these 

advancements have traditionally relied on cloud servers for computational power, which introduces 

challenges such as unpredictable latency, connectivity dropouts in weak-signal environments, and data-

privacy concerns. This reliance on the cloud remains a significant barrier to seamless deployment, 

especially in scenarios where real-time performance is critical. 

Addressing these limitations, more focused studies, such as those by Zheng et al. [16] and Friha et al. 

[17], explore methods to adapt LLMs for on-device use. Techniques like quantization, pruning, optimized 

inference pipelines, and tight hardware–software co-design aim to shrink models while maintaining 

functionality. Quantization-aware training approaches, as demonstrated by Kong et al. [18], further 

reduce accuracy loss compared to naive compression methods, offering a more refined path to edge 

deployment. Sikorski et al. [10] investigate the feasibility of deploying a quantized LLaMA 2-7B model 

on edge devices to control a mobile robot, though their approach often struggles with command 

misinterpretations, inconsistent execution, and is limited to simple tasks. Another path, as proposed by 

Yu et al. [9], focuses not on shrinking LLMs, but rather on designing custom hardware architectures 

specifically optimized for efficiently running large models. 

Despite these advances, challenges persist. Edge deployments that rely on pruning and post-hoc 

quantization often suffer noticeable drops in accuracy, as noted by Zheng et al. [16] and Friha et al. [17], 



 

 

and rarely undergo rigorous testing on truly multimodal or noisy inputs, which are common in real-world 

robotic applications. While quantization-aware retraining can partially mitigate these issues, it introduces 

additional complexity to the training process and still struggles with tasks requiring heavy reasoning in 

language or vision domains. Furthermore, work like that of Sikorski et al. [10], are increasingly being 

outpaced by newer distilled models that offer better efficiency, reduced memory footprints, and improved 

task performance, signaling a move away from traditional quantization techniques in edge-oriented 

LLMs. 

Custom hardware solutions, such as the Cambricon-LLM architecture developed by Yu et al. [9], offer 

high efficiency but come with their own hurdles. These include the need for specialized application-

specific integrated circuit (ASIC) designs, high development costs, and limited support from broader 

standardized ecosystems. Leveraging off-the-shelf edge platforms such as NVIDIA Jetson could simplify 

adoption and improve portability, making edge deployment more accessible and practical.  

2.2. Robotics for construction safety 

Recent academic studies highlight that robotics and machine learning can be used to enhance 

construction safety. For example, Bharathi et al. [19] showed that autonomous ground vehicles with 

deep learning and domain adaptation can automate the detection of safety guardrails, making 

inspections faster and more reliable. Dornik and Bartels [20] found that UAVs and legged robots improve 

site inspections and hazard detection, supporting safer work in hazardous or hard-to-reach areas. Lee 

and Chien [21] introduced a mobile robot system that combines deep learning with visual SLAM to detect 

PPE compliance and unsafe behaviors directly on site, offering improved flexibility and accuracy over 

fixed camera systems. Collectively, these advances automate hazard detection, minimize manual 

inspection risks, and support proactive safety management. 

Despite these advancements, significant limitations hinder widespread adoption. One major issue is that 

many of these systems rely on data-intensive methodologies, requiring extensive, high-quality datasets 

for training. Such datasets are often unavailable in construction environments, which are characterized 

by variability, unpredictability, and limited access to annotated data. This scarcity compromises model 

development and usage, especially when identifying hazards under unique or changing conditions. 

Another challenge lies in integrating these systems into existing workflows. Construction sites are 

dynamic environments with established routines, and introducing new technologies without proper 

alignment can disrupt operations and reduce efficiency in an industry that is already resistant to change. 

Suboptimal human-machine interfaces (HMI) further exacerbate implementation barriers. Poorly 

designed HMIs may alienate workers unfamiliar with advanced technologies, leading to resistance or 

disengagement.  

Overall, the state-of-the-art shows that most LLM implementations for robotics either depend on cloud-

based methods, introducing latency and reliability issues, or use outdated model-shrinking techniques 

for edge deployment. Some applications leverage custom hardware, but these solutions often face high 

costs and limited portability. In the safety context, previous approaches have been hampered by a lack 

of application-specific training data and poor integration into construction workflows due to unintuitive 

human–machine interfaces. Building on these findings, our paper addresses these gaps by developing 

and evaluating an on-device LLM-based robotic framework for construction safety, focusing on 

appropriate distilled model selection, plug-and-play deployment, and few-shot multimodal processing to 

overcome latency, data scarcity, and integration barriers. 

3. Methodology 

The proposed Local Intelligent Safety Assistant (LISA) framework enables more natural human-robot 

interaction on construction sites by using a multimodal pipeline that interprets and processes natural 

language commands (Figure 1). Its core components are a large language model (LLM), automatic 

speech recognition (ASR), and text-to-speech (TTS) systems, all of which run locally on the device 

without relying on cloud-based APIs. This local setup improves privacy, reduces latency, and increases 

reliability in dynamic construction environments. By combining these components, LISA supports near 

real-time, bidirectional communication between robots and workers without network dependency. The 

LLM’s function-calling capability also allows users to control robotic functions through natural language. 



 

 

This is shown with the camera function in Figure 1 (‘Call robot camera function’), which the system can 

call when visual input is needed. Figure 1 illustrates the workflow to process spoken commands, 

determines if visual input is required, activates the camera function when necessary, and provides audio 

feedback to the user. This workflow is meant to be generic. Specific tools used are indicated in Section 

4.  

 

Figure 1: BPMN diagram of the key elements of the LISA framework 

3.1. User interaction 

User voice input uses a straightforward push-to-talk system: the user presses a remote button to start 

speaking and presses it again when finished. This approach works well in construction environments, 

where high background noise can disrupt other activation methods like wake-word detection. The audio 

recorded between button presses is sent to the Automatic Speech Recognition (ASR) module, which 

converts speech to text for the large language model (LLM). Once the LLM generates a response, the 

text is processed by a local text-to-speech (TTS) engine, turning it into audio that plays through the 

robot’s speaker. This method enables natural communication with the robot and requires virtually no 

user training, unlike more complex methods such as tablet-based input for robot control. 

3.2. LLM function calling 

The initial system prompt gives the LLM detailed instructions on its purpose, functionality, and the 

functions it can access. This prompt can be customized for different applications and scenarios. When 

a user’s request is received in text form, the LLM uses these instructions to determine whether visual 

input is needed to fulfil the request. For instance, the LLM can be configured to activate the camera if 

the user asks the robot to perform a safety inspection or inquire about the current construction 

environment. Modern LLMs support structured output, enabling them to reliably generate specific 

command keywords, such as a “function_call” tag, whenever a function call is required. These keywords 

are then parsed to execute the corresponding function by the system. When users provide ambiguous 

commands, the LLM asks for clarification. If the LLM fails to generate the expected "function_call" 

keyword due to unclear input, the system defaults to conversational mode without triggering function 

execution. This prevents unnecessary function calls while maintaining natural dialogue flow. This 

approach can be extended to any high-level robotic function, as long as it is properly defined in the 

system prompt, enabling more complex capabilities like waypoint navigation or gesture control. 

4. Experimentation and Results  

We evaluated the LISA framework on a Unitree Go2 robot equipped with an NVIDIA Jetson Orin NX 

16GB, focusing on a real-world scenario: on-site personal protective equipment (PPE) compliance. The 

system was designed to run all inference tasks-language modeling, speech recognition, and speech 

synthesis, locally. 



 

 

4.1. Experimental setup 

4.1.1. LLM selection  

Given the Jetson Orin NX’s hardware constraints, we selected the Google Gemma 3:12B model, which 

is a recent multilingual open-weight model that offers a large 128K-token context window, supports 

structured outputs, function calling, and vision capabilities, and is designed for efficient deployment on 

resource-limited devices. This model enabled the use of detailed prompts and allowed the robot to 

interpret and act on natural language commands as well as process visual inputs, all while fitting within 

the memory and performance limits of the Jetson Orin NX. The only model parameter that was modified 

from the default values was the temperature, which was set to 0 for more deterministic output. 

4.1.2. Automated Speech Recognition and Text-to-Speech 

For automated speech recognition, we implemented OpenAI’s Whisper base model due to its strong 

balance of speed and accuracy. Whisper runs fully offline, providing reliable transcription with minimal 

latency and maintaining robustness in the noisy conditions typical of construction sites. While it supports 

multiple languages, only English was tested in our application. For text-to-speech, we used Piper-TTS, 

which delivered fast and reliable speech synthesis on the Jetson Orin NX. Although Piper’s voice quality 

is not as natural as some cloud-based solutions, it is comparable to widely used TTS systems and was 

adequate for providing clear, intelligible feedback in the field. 

4.1.3. Input and output hardware 

Audio input was captured using a wireless microphone system, with the user carrying a transmitter and 

the Jetson Orin NX receiving the signal via a connected receiver. A wireless USB clicker was used to 

activate the push-to-talk system, minimizing false activations in noisy environments. Visual input was 

provided by the Go2’s onboard camera, and audio output utilized the robot’s built-in speakers. Figure 2 

shows the hardware setup used to test the LISA framework. 

 

Figure 2: Hardware setup of the Unitree Go2 running the LISA framework; (a) front view; (b) top view with payload 

4.2. Application prompt 

The application used to test the LISA framework was centered on personal protective equipment (PPE) 

compliance within a construction environment. In this setup, the LLM was instructed by a system prompt 

to both answer user questions about appropriate PPE for specific tasks, and to perform safety analyses 

by evaluating images captured by the robot’s camera. Three representative construction activities were 

included in the prompt: cutting wood with a saw, climbing a ladder, and using aerosol. For each of these 

tasks, the typical required PPE was clearly defined. The LLM’s responsibilities included advising users 

on which PPE was necessary for each activity, analyzing photos of ongoing work to assess whether the 

correct PPE was being worn, and notifying users if any required equipment was missing. Readers 

interested in the prompts used in this study may request them from the authors. 



 

 

4.3. Results 

4.3.1. Human-machine interaction  

The first part of the experiment focused on evaluating the quality and speed of the communication 

between users and LISA. Our aim was to determine whether the system could support natural, near 

real-time exchanges. We found that for typical queries, such as asking for advice on PPE requirements 

for specific construction activities, LISA responded within an average of 5 to 10 seconds, in a controlled 

laboratory environment with minimal background noise. When users posed more general questions 

outside the scope of the application prompt, such as “what is the average curing time for concrete?”, the 

LLM was still able to provide answers, although response times tended to be slightly longer for these 

broader or less-defined queries. Overall, the system demonstrated reliable, conversational interaction 

suitable for a construction environment, as long as the microphone system is robust and not affected by 

background noise. While direct comparison with cloud-based LLMs is beyond this study's scope, 

preliminary findings from testing the framework has shown that cloud-based response times are highly 

network-dependent, with responses going well above 45 seconds in low bandwidth conditions and in 

several cases, there were issues with connectivity. LISA's local deployment ensures consistent 

performance regardless of connectivity conditions, which is critical for construction applications. 

4.3.2. Safety analysis 

The LLM was also instructed by the system prompt to initiate a visual inspection for PPE compliance 

whenever a user requested a safety analysis (e.g., “Hi LISA, can you do a safety analysis?”). Upon 

receiving such a request, the LLM recognizes the need for visual input and trigger the robot’s camera 

function to capture an image of the ongoing activity. We tested this capability by performing a series of 

construction tasks in front of the robot and asking LISA to conduct a safety analysis. Figure 3 shows the 

test situations, which involved the three target construction activities with varying levels of PPE 

compliance. We have found that the LLM was reliably performing the function calling to snap a picture 

with the robot’s camera. Table 1 summarizes the results, with a shortened version of the response 

provided by LISA. The actual responses were spoken to the worker in longer, more natural sentences 

(e.g., “Hi there, you seem to be cutting wood. It looks like you have all the required PPE including gloves, 

a hard hat and a safety vest. You are fully compliant, good job!”). The data for the prompt, the full 

responses and interaction between the worker and the robot can be provided by the authors upon 

request. 

 

Figure 3: Construction activities with varying PPE compliance: (a) cutting wood and (b) aerosol use, both images taken from the 

robot’s onboard camera, and (c) experimental setup showing LISA observing a subject climbing a ladder without proper PPE. 

 

 

 

 



 

 

Table 1: Summary of LISA's simplified responses for safety analysis 

Activity Required PPE Worn PPE LISA Response 

(a) Cutting wood hard hat, safety 
vest, gloves 

hard hat, safety vest, 
gloves 

cutting wood with gloves, hard hat, and 
safety vest; compliant 

(b) Aerosol use hard hat, safety 
vest, mask 

safety vest, mask aerosol use with safety vest, face mask; 
non-compliant, missing hard hat 

(c) Climbing ladder hard hat, safety 
vest, harness 

hard hat climbing ladder with hard hat; non-
compliant, missing safety vest, harness 

 

5. Discussion, Conclusion and Future Work 

The experiment demonstrates that a locally deployed LLM can effectively enhance human-robot 

interaction on construction sites, enabling natural communication without relying on network 

connectivity. The system performed reliably in general conversational tasks, with robust function calling, 

activity recognition and PPE compliance check. However, the testing was performed in a controlled 

laboratory setting, which may not fully capture the challenges of active construction sites, and the 

specific PPE application was relatively simple with only three construction tasks. Although formal 

accuracy comparison is outside this study's scope, it should be noted that larger cloud-based models 

are generally less prone to hallucinations and missed detections in the visual analysis tasks.  

Nonetheless, the results highlight the strong potential of locally executed LLMs to deliver robust, 

responsive solutions in bandwidth-constrained environments, paving the way for practical human-robot 

collaboration in construction. Looking ahead, future work will focus on several fronts to address the 

current limitations and further enhance system capabilities. These include deploying larger LLMs on 

more powerful edge hardware to improve reasoning and multimodal understanding, as well as fine-

tuning the vision components for more accurate and reliable visual recognition. Additionally, retrieval-

augmented generation (RAG) could be leveraged for more complex applications. Implementing and 

testing more advanced function calling, such as autonomous waypoint navigation, will also enable robots 

to perform increasingly complex tasks. Additionally, since all components of the LISA framework can 

support multilingual interaction, future development will also emphasize expanding and refining 

multilingual capabilities to better serve diverse teams on construction sites. These efforts aim to further 

improve the reliability, versatility, and inclusiveness of fully offline, network-independent human-robot 

systems for real-world construction applications.  
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