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Abstract  

Traditional data acquisition methods in construction often struggle with accuracy, efficiency, and 

adaptability, especially in dynamic jobsite conditions. These shortcomings can lead to elevated error 

rates, schedule overruns, and increased resource consumption. To address these issues, this paper 

presents the development of an autonomous robotic system that synergizes Simultaneous Localization 

and Mapping (SLAM), autonomous exploration, and robust data handling algorithms for enhanced 

reality capture and reduced human involvement. Building upon state-of-the-art SLAM solutions, our 

approach leverages LiDAR-based 3D mapping to enable real-time environment reconstruction, while an 

autonomous exploration algorithm guides the robot through unknown areas. A semi-autonomous robotic 

platform was deployed and tested in an active construction environment. By integrating a relational 

database framework and low-latency communication protocols, the platform efficiently handles large 

volumes of sensor data, facilitating both immediate oversight and post-processing analysis. Preliminary 

results indicate that the system adapts effectively to shifting on-site conditions, providing comprehensive 

and timely data that enhances project management and decision-making processes. This research 

highlights the value of autonomous robotic solutions as a cornerstone of the emerging Construction 4.0 

paradigm, offering a roadmap for more sustainable, efficient, and data-driven operations. 
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1. Introduction 

In the rapidly evolving construction technology landscape, the integration of artificial intelligence (AI) 

and robotics represents a significant advancement with the potential to dramatically enhance efficiency, 

accuracy, and sustainability. Historically, the construction industry has been characterized by its labour-

intensive processes and slow adoption of technological innovations, presenting a prime opportunity for 

transformative change. This change, often referred to as Construction 4.0, aims to tackle prevalent 

issues such as project delays, cost overruns, and safety hazards through automation and digitalization. 

By developing and deploying autonomous robots for reality capture tasks in construction sites, the 

project seeks to reduce human error, improve data collection processes, increase the frequency at which 

data is captured, and optimize project management through dynamic, AI-driven decision-making tools 

that take into consideration all the collected data. This approach not only promises to elevate the 

precision and reliability of construction operations but also to significantly reduce the environmental 

impact associated with traditional construction practices. 

This paper outlines the development process of our robotic system, tasked with autonomous data 

acquisition in construction sites. Through a state-of-the-art literature review, existing methodologies 

have been studied in order to identify essential characteristics of robotic platforms for effective operation 

in construction sites. Next, the methodology section showcases the current data collection process of 



 

 

the robot, with details regarding the robotic platform, autonomous navigation methods, data collection 

and data handling. Additionally, the proposed robotic system has been tested in an active construction 

site, which is described in the case study section. The current drawbacks of the proposed system have 

also been outlined in the discussion and limitations section, describing components of the autonomous 

workflow that will need to be improved in future work. 

2. Previous work 

2.1. Autonomous navigation 

Recent advancements in autonomous robotics have significantly improved the efficiency and accuracy 

of construction processes. Autonomous robots are now capable of navigating complex construction 

environments, avoiding obstacles, and performing data collection with minimal human intervention. 

Yuwei Cheng et al. [1] introduced the USV Inland Multi-Sensor Dataset, gathered using a semi-

autonomous inflatable boat with multiple sensors to tackle challenges like fog and dynamic waters, 

improving navigation systems for inland waterways. Another significant contribution is by Fraj Hariz et 

al. [2], who proposed a method integrating SLAM and ROS for large-scale 3D point cloud mapping in 

GNSS-challenged areas, enhancing mapping accuracy by combining LiDAR, IMU, and GPS in real time.  

Chong Xu [3] advanced UAV-based forest mapping using LiDAR, GNSS, and IMU sensors, employing 

SLAM techniques such as FASTLIO-SC and LIOSAM to produce precise 3D maps for wildfire risk 

assessment. Han Wang et al. [4]  proposed Intensity-SLAM, integrating intensity data from LiDAR to 

improve mapping accuracy via robust feature detection and pose optimization, addressing geometric-

only SLAM limitations in complex environments. Haala et al. [5] analyzed the StreetMapper mobile laser 

scanning system, demonstrating its capability to rapidly collect dense 3D point clouds in urban settings 

with high accuracy. 

SLAM algorithms are essential for simultaneously mapping environments and determining a robot's 

pose. While visual SLAM produces high-quality maps, it is less reliable under poor illumination, which is 

common in construction sites. Our research indicates that LiDAR-based 3D SLAM methods are more 

effective, as 2D SLAM struggles with height variations (e.g., stairs) [6]. 

LeGO-LOAM [7], optimized for low-power ground robots, includes loop-closure detection to enhance 

mapping reliability. FAST-LIO2 [8], although more computationally efficient, lacks loop-closure 

capabilities, while LIO-SAM [9] employs a robust factor graph, incorporating IMU data, loop closure, and 

optional GPS inputs, making it well-suited for dynamic construction environments.  

In addition to reconstructing the 3D environment through SLAM methodologies, the robot needs to be 

able to move autonomously through a given environment. Exploration algorithms are used to determine 

which direction the robot should autonomously move toward to complete exploration most efficiently. 

The most popular exploration algorithms are frontier-based exploration strategies that enable the robot 

to explore a generic 2D environment by defining frontiers between regions of known and unknown space 

[6]. Additionally, some techniques utilize a cost/gain function with adjustable parameters that allow the 

algorithm to be adapted to different applications. Some of these methods are discussed below. 

Lu et al. [10] presented the Optimal Frontier Selection algorithm, a 3D exploration method that utilizes 

frontier exploration through an Octomap with a cost-gain function. Similarly, Autonomous Exploration 

Planner (AEP) [11] employs a potential information gain function driven by separate local and global 

planners. Frontier-based exploration is used as the global planner, while Receding Horizon Next-Best-

View Planning (RH-NBVP) is employed at the local scale. The AEP uses a Rapidly exploring Random 

Tree (RRT) to determine the most efficient pose with low run time. Also making use of the RRT, the 

Dual-Stage Viewpoint Planner (DSVP) [12] uses a two-stage approach to enhance performance in 

highly convoluted environments. Lastly, Graph-based Path Planning (GBP) [13] makes use of rapidly-

exploring random graph search (RRG) and Dijkstra’s algorithm to determine the robot's exploration goal; 

GBP then triggers the global planner to determine whether it is feasible to reach the desired pose, 

considering the robot's battery level. 



 

 

2.2. Data handling 

Efficient data management is essential for the success of construction projects, as it facilitates accurate 

tracking and effective oversight. Martínez-Rojas et al. [14] illustrate how integrating Information and 

Communication Technologies (ICT) transforms construction project management by improving data 

handling, cost control, and risk management. Their work highlights ICT’s potential to streamline 

decision-making and enhance overall project efficiency, proving it to be an invaluable tool in modern 

construction management. 

Building on these advancements, El-Omari et al. [15] developed an innovative tracking and control 

system that automates data collection on-site, utilizing barcoding, RFID, LiDAR, and digital imaging. 

The data gathered is organized in a central database, enabling more accurate reporting and timely 

project management decisions. This automated system addresses the growing need for precise and 

accessible data throughout project timelines. Similarly, Ward et al. [16] explored wireless data collection 

through the IEEE 802.11b protocol, enabling real-time access to information on construction sites. This 

system not only improves data flow across sites but also helps reduce costs and improve contract 

performance by facilitating timely access to project data. 

In addition, Chassiakos et al. [17] created a web-based construction management system using 

relational databases to handle project data efficiently. This system enhances the reliability and speed of 

information exchange, supporting streamlined communication among project teams and reducing 

delays and misunderstandings during project execution. Together, these technologies underscore how 

essential efficient data handling is for seamless project progress tracking and management. 

As data volume and complexity increase on modern construction sites, robust SQL databases have 

become indispensable, especially in robotic data management. Unlike NoSQL, SQL databases offer 

structured models and robust interfaces that support complex queries and transactions essential for the 

reliability and accuracy needed in construction. A recent example involves an intelligent platform for 

engineering construction that leverages SQL Server to manage backend data, demonstrating SQL’s 

capability to handle construction project demands through secure and structured data management [18]. 

3. Methodology 

This section outlines the data collection methodology, emphasizing the shift from traditional manual 

techniques to an autonomous approach that leverages robotic systems and LiDAR technology. 

Historically, construction site data collection required substantial human labor and time, with multiple 

points of manual intervention. By incorporating advanced robotics and a commonly used robot software 

framework (e.g., Robot Operating System, ROS), the proposed approach significantly reduces human 

involvement while boosting efficiency. The BPMN flowchart in Hiba! A hivatkozási forrás nem 

található.Figure 1 illustrates the key steps of this autonomous data collection process. 

A mobile robotic platform with a modular architecture would be ideal for the integration of the required 

sensors, including a high-precision 3D LiDAR scanner. For more information about the development of 

such a platform, readers may refer to [19]. Moreover, compatibility with ROS ensures efficient 

communication between onboard sensors and autonomous control systems, thereby optimizing data 

acquisition and navigation processes. 

 

Figure 1. BPMN flowchart of the data collection process. The red background represents a manual 
process. The green background represents an automated process. A gradient between red and green 
represents a semi-autonomous process. 



 

 

Once the mobile robot reaches a designated location on the construction site, the onboard 3D LiDAR 

scanner autonomously captures data for applications such as progress monitoring and quality control. 

The scan parameters are dynamically adjusted in response to environmental factors or user-defined 

settings. The captured point cloud data is then processed, registered within a shared reference frame, 

and subjected to a quality review. If the data meets predefined standards, the process concludes; 

otherwise, additional scans are performed autonomously. 

This autonomous data collection paradigm markedly improves operational efficiency, enhances 

accuracy, and minimizes human error. By employing Simultaneous Localization and Mapping (SLAM), 

the platform accurately maps the environment while autonomous exploration algorithms guide its 

movement across the site. A robust infrastructure for data transmission, storage, and management 

preserves data integrity and ensures accessibility for subsequent analysis. 

3.1. Autonomous navigation 

The robotic system integrates simultaneous localization and mapping (SLAM) and autonomous 

navigation to enable data acquisition in construction environments. SLAM is responsible for constructing 

a map of the surroundings while localizing the robot within it. To achieve this, the system combines lidar-

inertial odometry (LIO) for motion estimation with a mapping framework that maintains a consistent 

global representation of the environment. While LIO provides high-frequency motion updates by fusing 

lidar and inertial measurements, the SLAM backend ensures map optimization through loop closure and 

global consistency. 

For lidar-inertial odometry, we implemented LIO-SAM, which utilizes factor graph optimization to fuse 

lidar and IMU data while incorporating loop closure to minimize drift over extended operations. 

Preliminary simulation experiments were conducted to compare different methods, providing insights 

into their performance in construction-like environments and allowing us to identify the most suitable 

approach before real-world deployment. This method was selected due to its ability to provide robust 

localization in environments where external positioning systems are unavailable. The SLAM component 

then processes this data to generate a globally consistent map, ensuring accurate spatial representation 

of the construction site. Thanks to the loop closure, dynamic objects do not persist in the map, since 

they’re removed during the scan-matching updates.  

For autonomous navigation, the system initially used graph-based path planning (GBP), which employs 

a rapidly-exploring random graph (RRG) structure combined with Dijkstra’s algorithm to optimize the 

selection of waypoints. GBP was chosen due to its ability to balance efficient exploration with adaptive 

path selection.  

However, due to its computational overhead, an alternative frontier-based exploration algorithm, 

Explore-Lite, was ultimately selected. This method enables the robot to explore systematically by 

identifying and navigating toward the boundaries between mapped and unmapped regions. Additionally, 

the algorithm allows for operator intervention when necessary, ensuring adaptability to changing site 

conditions. 

3.2. Data collection 

The selection of the most suitable LiDAR system for our autonomous data collection was done 

considering various criteria ensuring all the requirements for effective integration with the robotic 

platform were considered. 

To identify the optimal LiDAR system, we compared several models: the FARO S150, Trimble X12, 

Matterport Pro3, and Leica BLK360 G1, as can be seen in Table 1. The comparison was based on key 

factors such as design and portability, performance specifications, environmental adaptability, 

connectivity and control, ease of use, and integration with the most used software platforms. 

 

 

 



 

 

Table 1. Comparison details between different LiDAR systems. 

 Leica BLK360 FARO S150 Trimble X12 Matterport Pro3 

Weight 1 kg 4.2 kg 6.7 - 7.7 kg 2.2 kg 

Battery Life > 40 setups 4.5 hours 5 hours >220 scans 
continuously 

Speed Up to 360,000 
pts/sec 

976,000 pts/sec Up to 2.187 million 
pts/sec 

100,000 points per 
second 

Precision 4mm @ 10m ±1mm ≤ 1 mm + 10 ppm/m ±20 mm @ 10 m 

Range 0.6 - 60 m 0.6 - 150 m 0.3 - 365 m Up to 100 m 

FoV 360° × 300° 360° × 300° 360° × 320° 360° × 295° 

Data Types 3D point clouds, 
thermal data, RGB 
data 

3D point clouds, 
RGB data 

3D point clouds, 
RGB data 

3D point clouds, 
RGB data 

 

While the compared laser scanners have their own strengths and capabilities, the Leica BLK 360 

emerges as a compelling choice for autonomous data collection and navigation in construction 

environments. Its lightweight and compact design, combined with its ease of use and remote operation 

capabilities, make it well-suited for integration into autonomous robotic platforms. The BLK 360’s 

comprehensive data collection, including 3D point clouds, spherical imaging, and thermography, can 

provide valuable insights into the construction site, addressing a wide range of needs. Additionally, its 

environmental adaptability and software integration capabilities further enhance its suitability for 

construction applications. The BLK 360’s balanced performance specifications, while not the highest 

among the compared scanners are sufficient for the data collection requirement in construction projects. 

3.3. Data handling 

The data management strategy for this study centers on structured storage and easy retrieval, both vital 

for handling the substantial sensor data generated by the robotic platform in construction site 

environments. We implemented a relational database that organizes each ROS topic into separate 

tables for each sensor, streamlining data retrieval and facilitating consistent data handling. This 

structured setup, combined with robust indexing and querying, enhances performance, data integration, 

and reliability, which are critical for deploying advanced robotics solutions. 

To gather this data, the platform relies on sensors that provide continuous streams of environmental 

and operational data. To balance real-time requirements with the need for comprehensive data analysis, 

we adopted a hybrid collection approach. This involves both local storage on the robot via ROSbag files 

and live telemetry for immediate data transmission. This method allows us to monitor the robot’s real-

time performance while ensuring that detailed data is available for post-mission analysis, supporting 

both instant decision-making and comprehensive review if any issues arise.  

Efficient data transmission is essential, particularly for real-time applications where both speed and 

reliability are crucial. We utilized WebSockets with rosbridge, which allows low-latency communication 

over a single TCP connection. This setup proved ideal for high-bandwidth data transmission, enabling 

robust, real-time monitoring and facilitating bidirectional communication for sensory and kinematic data. 

For data visualization, effective tools are necessary to allow operators to monitor real-time data and 

robot status remotely. Solutions such as Foxglove provide flexible options for tracking data without 

requiring direct access to the robot’s network. These visualization methods enhance flexibility and 

enable continuous monitoring, which is particularly useful on dynamic construction sites. 

This integration of structured data management, hybrid collection methods, low-latency transmission, 

and remote visualization forms a comprehensive approach to real-time monitoring and post-operation 

analysis, as depicted in Figure 2Hiba! A hivatkozási forrás nem található..  



 

 

 

Figure 2. Data handling process, starting with the collection and ending with the storing. 

These elements ensure that our system provides reliable, accessible insights into the operational 

demands of construction sites. 

4. Case study 

4.1. Overview of the robotic platform 

The robotic system used for this study is based on the SUMMIT-XL mobile platform (Figure 3Hiba! A 

hivatkozási forrás nem található.), chosen for its adaptability to dynamic and complex environments. 

The platform features a four-wheel holonomic drive system, enabling precise manoeuvrability in both 

indoor and outdoor settings. Its modular architecture allows for the seamless integration of multiple 

sensors and computational units required for autonomous operation. 

 

Figure 3. Overview of the modified SUMMIT-XL platform and its main components. 

For navigation and mapping, the platform is equipped with the Ouster OS1 LiDAR, which provides real-

time 3D SLAM capabilities. This sensor generates dense point clouds with up to 120m in range, with an 

FOV of 45º×360º, facilitating accurate localization and obstacle detection in challenging environments. 

Additionally, the Leica BLK360 scanner is integrated for high-resolution data acquisition, with up to 60m 

in range and an accuracy of 4mm@10m, enabling detailed 3D reconstructions at predefined waypoints. 

The platform is equipped with an Intel NUC12 as an onboard computer, with an i9-12900 processor and 

64GB of RAM.  



 

 

The platform is controlled via a ROS-based architecture, ensuring efficient communication between 

sensors, the onboard computer, and the exploration and SLAM algorithms. This modular system 

architecture enhances the platform's flexibility, enabling its application in diverse construction scenarios. 

4.2. Overview of the construction site 

The experiments were conducted in a construction site spanning approximately 500 m², characterized 

by its dynamic and complex layout. The site included narrow corridors, evolving structural layouts, and 

various static and moving obstacles such as temporary barriers and scattered construction materials. 

These features provided a realistic testbed for evaluating the robotic system's navigation, mapping, and 

data acquisition capabilities. 

The construction site's dynamic nature posed challenges for real-time mapping and obstacle avoidance, 

making it an ideal environment to test the Ouster OS1’s SLAM capabilities and the Leica BLK360’s 

precision scanning. 

4.3. Results obtained 

To effectively demonstrate the capabilities of the developed robotic system, we designed three 

experiments, each addressing specific objectives within the context of autonomous navigation, data 

collection, and mapping on a construction site. The purpose of these experiments was to progressively 

evaluate the system’s functionalities under varying levels of autonomy and complexity. 

The relationship and objectives of the experiments are summarized in Table 2 below. Each experiment 

builds on the insights gained from the previous one, offering a holistic evaluation of the system’s 

performance. 

Table 2. Summary of the performed experiments. 

Experiment Objective Key features 

1. Teleoperated SLAM Establish a baseline 3D map for 
comparison 

Manual control, 3D point cloud 
generation, Ouster OS1 

2. Autonomous exploration Evaluate autonomous navigation and 3D 
SLAM, as well as the creation of 2D 
obstacle map 

Fully autonomous exploration, 
combined 3D/2D mapping, 
Ouster OS1 

3. Waypoint-based scanning Assess precision and high-resolution 
scanning at predefined locations 

Waypoint execution, high-
resolution 3D scanning, BLK360 

4.3.1. Experiment 1: Teleoperated 3D SLAM 

In the first experiment, the SUMMIT-XL was teleoperated to navigate through the construction site while 

performing 3D SLAM using the Ouster OS1. This teleoperated run served as a baseline for comparison 

in subsequent experiments. 

During this run, the robot was manually guided through various sections of the site, generating a 

comprehensive 3D point cloud of the environment. This baseline map was later used to evaluate the 

performance of the autonomous runs in terms of map completeness and accuracy. 

4.3.2. Experiment 2: Autonomous exploration with 3D SLAM and 2D mapping 

The second experiment involved fully autonomous exploration, where the robot was tasked with 

navigating the construction site on its own, using the explore-lite algorithm for autonomous exploration 

and the LIO-SAM algorithm for 3D SLAM. In this run, the robot was not given any pre-defined waypoints; 

instead, it autonomously explored the environment, generating both a 3D point cloud and a 2D map of 

the site. 

The robot successfully covered all critical areas, capturing a detailed 3D map of the site (Figure 4 aHiba! 

A hivatkozási forrás nem található.) comparable to the teleoperated baseline (Experiment 1). 

Additionally, the robot produced a 2D map (Figure 4 bHiba! A hivatkozási forrás nem található.), w

hich provided a top-down view of the environment, showing key features like walls and obstacles. Since 

the navigation system operates in a 2D plane, a 2D map is required for path planning and waypoint 

generation in the next Experiment. 



 

 

  

(a) (b) 

Figure 4. (a) Point cloud collected with the SLAM algorithm and the Ouster OS1. Ceiling has been 
removed for visualization purposes. (b) Generated 2D map during the exploration process. 

4.3.3. Experiment 3: Predefined waypoints with BLK360 scanning 

In the third experiment, a set of waypoints was predefined on the 2D map generated in the previous 

experiment. The goal was for the robot to autonomously navigate to these waypoints, stop, and perform 

high-resolution scans using the BLK360 scanner. The waypoints were strategically manually placed at 

areas of interest within the site, including narrow corridors and key structural features. 

At each waypoint, the BLK360 scanner was autonomously activated, capturing high-resolution 3D scans 

of the surrounding environment (Figure 5Hiba! A hivatkozási forrás nem található.). The robot 

successfully stopped at all waypoints and performed the scans without intervention, demonstrating the 

effectiveness of integrating SLAM-based navigation with precision scanning tasks. 

  

(a) (b) 

Figure 5. Point cloud collected with the BLK360 scanner showing (a) RGB color information and (b) 
reflectance information. 

5. Challenges and limitations 

Throughout the project, we encountered several challenges during navigation and data collection that 

necessitated additional testing and modifications. Implementing navigation algorithms on our hardware 

required multiple adjustments, particularly with the GBP exploration algorithm, which was originally 

designed for static environments like tunnels. On dynamic construction sites, moving obstacles caused 

cluttered maps, reducing the robot’s efficiency. Properly tuning map generation parameters was critical: 

over-tuning created excessive clearance, while under-tuning introduced clutter that hindered real-time 

exploration. 

Another key issue involved defining the robot’s safety bounds. Although a larger safety buffer minimized 

collision risks, it limited manoeuvrability in narrow corridors, requiring iterative adjustments to balance 

safety and flexibility. Furthermore, while our 3D exploration algorithm performed well in controlled lab 

conditions, it failed on-site due to hardware and communication issues within the ROS network. Given 



 

 

time constraints, we reverted to a 2D exploration algorithm on-site but retained 3D SLAM for generating 

detailed point clouds, providing valuable spatial data despite reduced exploration capabilities. 

Data collection presented unique challenges, particularly due to the limitations of the Leica-provided API 

and scarce online resources. Initial connectivity issues between the BLK360 sensor and the robot’s 

computer were resolved through upgrades. We also overcame obstacles in point cloud colorization by 

switching from HDR to LDR panoramic imaging. Data downloading issues, which previously led to 

incomplete downloads, were resolved by establishing a logical acquisition sequence.  

On the data handling side, network latency issues between the ROS master and the robot initially 

hindered real-time operations. Enhancing the network infrastructure and optimizing WebSocket 

configurations reduced lag, which improved the fidelity of real-time visualizations. Compatibility issues 

between ROS Noetic and an outdated version of Ubuntu also caused crashes, particularly during high 

data throughput. Transitioning to the correct Ubuntu version and stabilizing ROSbag recordings through 

shell script-based execution eliminated these interruptions and ensured continuous data collection. 

While these challenges created setbacks, they also provided valuable insights, enabling us to enhance 

the system’s robustness and the quality of collected data. 

6. Conclusions and future work 

This research set out to address key limitations in construction data acquisition by developing an 

autonomous robotic system that combines SLAM and advanced data handling. We successfully 

validated the system through real-world testing, achieving reliable navigation and precise data collection 

in a dynamic construction site environment. The outcomes demonstrate that our robotic platform adapts 

well to on-site challenges, highlighting the potential for reducing human intervention and enhancing data 

reliability in construction management. This project serves as a foundational step, illustrating the viability 

and benefits of autonomous systems in the field. 

The automation of data collection plays a key role in improving precision, reliability, and sustainability in 

construction operations. By removing human inconsistencies, the system ensures consistent and 

comprehensive data acquisition, reducing the risk of missing critical site details. This increased precision 

enables better decision-making and early detection of potential issues, which in turn helps mitigate 

delays, cost overruns, and material waste. Additionally, the availability of frequent and accurate site data 

allows for more efficient resource allocation and process optimization, contributing to a reduction in 

environmental impact over time. While this study focuses on the implementation and validation of the 

robotic system, its long-term benefits lie in its ability to support smarter, data-driven construction 

practices. 

To further enhance the system, future work will focus on addressing the limitations identified, particularly 

in navigation flexibility, by implementing a 3D exploration algorithm and real-time data handling. 

Improvements will target more robust algorithms to better handle moving obstacles, as well as optimize 

data transmission processes to reduce latency and increase real-time capabilities. Additionally, 

expanding sensor compatibility and refining autonomous exploration algorithms will improve adaptability 

to even more complex environments, strengthening the system's utility in diverse construction scenarios. 
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