
CCC 2025 Proceedings of the Creative Construction Conference (2025)  
Edited by: Miroslaw J. Skibniewski & Miklós Hajdu & Žiga Turk  

https://doi.org/10.22260/CCC2025/0050 

 

Corresponding author email address: hongjo@yonsei.ac.kr 

COMPARATIVE ANALYSIS OF SHORT-TERM WATER LEVEL 
FORECASTING IN UNGAUGED RIVER SYSTEMS 

Younga Shin, Kichang Choi, Yeonjoo Kim, Hongjo Kim 

Yonsei University, Seoul, Republic of Korea 

Abstract 

The intensification of extreme rainfall events due to climate change has significantly increased flood 

risks, with levee overtopping emerging as a major cause of catastrophic failures. Accurate short-term 

water level forecasting is therefore essential, particularly in ungauged river systems where monitoring 

infrastructure is limited. However, existing deep learning models heavily rely on long-term observations 

from gauged sites, while physics-based models require dense, high-quality input data—both of which 

constrain real-time applicability in data-scarce regions. To address these challenges, we propose 

DeepCreek, a lightweight MLP-based forecasting model adapted from TSMixer, designed for short-term 

water level forecasting in ungauged basins. Utilizing nationwide rainfall scenario-based datasets 

comprising eight key hydrometeorological variables across 232 observation stations in South Korea, 

and employing a spatially segregated evaluation strategy, DeepCreek achieved an RMSE of 1.0987m 

and a MAPE of 15.43% for six-hour-ahead predictions under extreme rainfall scenarios. The model 

consistently outperformed conventional approaches on both the rainfall scenario and extreme rainfall 

scenario test sets, demonstrating robust performance even under noisy real-world conditions without 

explicit outlier removal. These results underscore DeepCreek’s potential as a practical and scalable AI 

solution for real-time flood forecasting in regions with limited hydrological monitoring infrastructure. 
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1. Introduction 

1.1. Research background 

Climate change has increased the frequency and intensity of extreme rainfall, raising concerns over the 

stability of flood protection systems such as levees. Among various failure mechanisms, overtopping 

has been consistently identified as one of the most critical and frequent causes [1]. It accounted for over 

68% of levee breaches across nine countries [2]. In South Korea, the proportion of overtopping-related 

failures increased from 39.6% of 758  cases between 1987 and 2003 to 69% during the 2006 floods [3-

4], indicating an escalating trend. This underscores the urgent need for accurate water level forecasting 

to support timely early warning and disaster response. Such needs are particularly acute in ungauged 

or under-monitored regions, where monitoring infrastructure remains insufficient. Unlike streamflow, 

water level directly reflects overtopping risk and thus provides more actionable information for disaster 

prevention systems. 

1.2. National context: observation system gaps in South Korea 

Despite the critical role of real-time water level data in flood forecasting, South Korea exhibits substantial 

disparities in the spatial distribution of gauging stations. As illustrated in Figure 1, over 95% of rivers are 

classified as regional rivers or small streams, yet monitoring infrastructure remains heavily concentrated 

along national rivers [5]. National rivers have an average of 4.25 stations per river, equivalent to 8.6 

stations per 100 km of river length, whereas regional rivers and small streams are monitored by only 

0.10 and 0.02 stations per river, respectively, corresponding to 1.4 and 0.8 stations per 100 km [6-7]. 

This imbalance significantly constrains the applicability of conventional data-driven models, while 



 

 

infrastructure expansion remains economically impractical. Consequently, there is an urgent need for 

forecasting methods specifically tailored to under-monitored and ungauged river systems, particularly 

those most vulnerable to flood-related impacts. 

 

Fig. 1. (a) River length by classification (% and km); (b) Number of rivers by classification (% and 
count); (c) Number of water level stations per 100km of river by classification; (d) Number of water 
level stations per river by classification. 

1.3. Previous approaches 

Water level forecasting methods are generally classified into physics-based and data-driven 

approaches. Physics-based models, particularly hydrodynamic simulations, provide physically 

interpretable outputs but require intensive computation and high-quality input data, thereby limiting their 

scalability for real-time applications [8-11]. In ungauged or data-scarce basins, their construction and 

calibration become particularly challenging [12]. In contrast, data-driven models offer greater flexibility 

and do not require detailed prior knowledge of catchment characteristics [13-14]. However, their 

performance often deteriorates in regions with sparse historical data, increasing the risk of overfitting 

[9]. While hybrid models that combine physics-based and data-driven approaches can improve 

accuracy, their inherent complexity and reliance on high-quality inputs similarly constrain their use in 

real-time forecasting [9, 11]. Moreover, most deep learning studies have focused on specific gauged 

locations [15] or on upstream-downstream relationships using complete time series data [9, 13-14, 16-

18]. Although regionalization and transfer learning have been applied to streamflow prediction in 

ungauged basins, these methods primarily target discharge or runoff rather than water level, the most 

direct indicator of overtopping risk [19-23]. While a few studies have investigated rainfall-event-specific 

training [18], research on event-centered, short-term water level forecasting in ungauged regions 

remains sparse. 

1.4. Objectives and contributions 

Despite recent advancements in water level forecasting, critical limitations remain, particularly in 

ungauged basins. Most existing models depend on long-term data from gauged sites and often 

underperform during extreme events or noisy conditions, thereby limiting their real-time applicability in 

ungauged basins. To address these challenges, we propose DeepCreek, a lightweight deep learning 

model designed to (1) operate effectively in data-scarce environments, (2) improve prediction accuracy 

through event-centered training, (3) ensure spatial generalization, and (4) maintain robustness under 

extreme and anomalous conditions. 



 

 

The main contributions of this study are as follows:  

• Development of a nationwide hourly hydrometeorological dataset from 232 sites in South Korea. 

• Adaptation and enhancement of the TSMixer architecture to better capture temporal dynamics and 

inter-feature relationships critical for flood prediction. 

• Implementation of a spatial cross-validation strategy to realistically simulate ungauged conditions. 

• Demonstration of generalization and robustness through nationwide extreme-event experiments. 

These contributions collectively establish a scalable foundation for real-time water level forecasting in 

regional rivers, where monitoring infrastructure is limited yet flood risks are substantial. 

2. Methodology 

2.1. Study area and data preprocessing 

This study focuses on rivers and stream networks across South Korea. Hydrological and meteorological 

data, including rainfall (mm), water level (EL.m), air temperature (°C), relative humidity (%), dew point 

temperature (°C), sea-level pressure (hPa), wind speed (m/s), and wind direction (categorical compass 

values), were collected from the Han River Flood Control Office. These variables were selected based 

on prior studies emphasizing their relevance to hydrological modeling for ungauged basins [23]. A total 

of 232 observation sites were used to construct a nationwide, hourly time series dataset spanning 

multiple years. To ensure spatial consistency, each water level station was assigned the nearest rainfall 

station within 5 km and the nearest meteorological station within 25 km. Duplicate timestamps were 

removed, and stations with unstable water level records, identified by a difference greater than 6 meters 

between their 300th highest and lowest observations, were excluded. Additional preprocessing steps 

were performed to align the dataset toward rainfall-driven hydrological dynamics. Scenario-based 

segmentation was applied by extracting 24-hour windows (12 hours before and after) surrounding 

rainfall events lasting more than two hours. 

2.2. Model architecture 

We employed TSMixer, a recently proposed architecture for multivariate time series forecasting [24]. 

While traditional MLPs lack the ability to model temporal dependencies, TSMixer separates temporal 

and feature interactions through two distinct mixing blocks, first capturing temporal patterns for each 

feature, and second performs inter-feature mixing to learn cross-variable relationships as illustrated in 

Figure 2. To adapt the model to our forecasting task, we propose DeepCreek, an enhanced version of 

TSMixer with two key modifications. First, we progressively expand feature dimensionality across mixer 

blocks to mitigate representational bottlenecks and enhance the model’s capacity to capture complex 

patterns. This design facilitates richer intermediate representations and improves generalization under 

dynamic and noisy hydrological conditions. Second, we increase the hidden dimension of the feed-

forward network layers, thereby enhancing the model’s ability to learn nonlinear transformations. This 

modification supports deeper abstraction of temporal and spatial dependencies,  leading to improved 

forecasting performance. These enhancements enable the model to maintain a higher-capacity latent 

space across layers, rather than being constrained by low dimensional hidden vectors, which is critical 

for capturing complex spatiotemporal dynamics under real-world noise. A comprehensive overview of 

the architectural modifications and dimensional expansions is provided in Figure 3. 

 



 

 

Fig. 2. Structure of TSMixer 

 

Fig. 3. Comparison of model architectures: (a) TSMixer; (b) DeepCreek. 

2.3. Experimental setup and dataset composition 

The dataset was spatially split into 80% training and 20% testing sites, ensuring complete spatial 

independence between train and test sets to realistically simulate forecasting in ungauged basins. In 

addition to the rainfall scenario-based segmentation described in Section 2.1, a general dataset of 18-

hour sequences without missing values was also constructed. To evaluate model robustness under 

extreme rainfall conditions, a subset of the test set was extracted based on the World Meteorological 

Organization threshold, which defines rainfall exceeding 50 mm h⁻¹ as an extreme event [25]. This 

Extreme-Scenario subset was evaluated separately to assess performance in high-risk flood situations. 

The detailed composition of all datasets is summarized in Table 1. 

Table 1. Dataset composition for rainfall scenario-based, general, and extreme-scenario test sets. 

Category Rainfall Scenario-based General sequences Extreme-
Scenario 
(Test 
Only) 

Train Set Test Set Total Train Set Test Set Total 

No. of stations 185 47 232 185 47 232 36 

No. of rainfall 
scenarios/sequences 

91,488 23,748 115,236 31,773 10,564 42,337 170 

No. of time steps 6,337,499 1,655,426 7,992,925 19,044,514 5,117,146 24,161,660 9,961 

Each input consisted of eight hydrometeorological variables observed over the past 12 consecutive 

hours (t−12 to t−1): rainfall (rf), air temperature (ta), relative humidity (hm), dew point temperature (td), 

sea-level pressure (ps), wind_x, wind_y (decomposed wind speed and direction), and water level (wl). 

The model was trained to predict water levels for the next six hours (t to t+5), enabling short-term multi-

step forecasting. A sliding window approach was adopted to generate input-output pairs at each valid 

time step.  

All experiments were conducted on a Linux system (CPU: AMD Ryzen 7 5800X @ 4.85GHz, RAM: 32 

GB, GPU: NVIDIA GeForce RTX 3090) using Python (3.10.16) and the PyTorch (2.6.0+cu124) deep 

learning framework. Model training was performed using the Adam optimizer with an initial learning rate 

of 0.001, a batch size of 8196, and mean squared error (MSE) as the loss function. Each model was 

trained for up to 100 epochs, with early stopping (patience = 5) and StepLR scheduler (decay factor = 



 

 

0.5 every 10 epochs) to prevent overfitting and stabilize convergence. The same training configuration 

was consistently applied across all model variants to ensure fair comparison. 

 

Fig. 4. (a) Example of normalized features over time; (b) Spatial distribution of train and test sites;  
(c) Input-output structure for one prediction instance. 

2.4. Baseline models for comparison 

To evaluate the performance of the proposed model, we conducted comparative experiments using 

widely adopted deep learning models that are commonly applied in recent water level forecasting 

studies. These include CNN [14], GRU [9, 15], LSTM [13, 15-18] and Bi-LSTM [13], which have been 

used either as standalone models or as components within hybrid or attention-based frameworks. All 

models were trained under the same experimental setup described in Section 2.3. Table 2 summarizes 

the architectural configurations of each baseline model.  

Table 2. Architectural configurations of baseline models used for comparison. 

Model Type Directionality Key Architecture 

CNN CNN - 2 Conv2D layers + MaxPool + 2 FC layers 

GRU RNN Uni 2-layer GRU + 1 FC layer  

LSTM RNN Uni 2-layer LSTM + 1 FC layer  

Bi-LSTM RNN Bi 2-layer Bi-LSTM + 1 FC layer  

TSMixer MLP - Stacked MLPs for temporal and feature mixing 

DeepCreek MLP - TSMixer with output and hidden dimension expansion 

 

3. Results 

3.1. Evaluation metrics 

To assess the predictive performance of the models, we adopted five widely used metrics, mean 

squared error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE), and the coefficient of determination (R²). The metrics are defined as follows: 
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where 𝑦𝑖 and 𝑦𝑖̂ denote the observed and predicted water level at time 𝑖,  𝑦̅ is the mean of the observed 

values, and 𝑛 is the number of samples. 

3.2. Performance comparison 

Tables 3 and 4 compare the performance of DeepCreek and baseline models across all evaluation 

metrics under ungauged conditions. Table 3 presents results on rainfall scenario test set, while Table 4 

extends the analysis to the extreme rainfall scenario test set, providing a robustness assessment under 

high-risk flood conditions. Across all settings, DeepCreek consistently outperformed CNN, GRU, LSTM, 

and Bi-LSTM, achieving significantly lower error rates and higher R² scores, particularly under extreme 

events. While models such as CNN and LSTM exhibited overfitting with marked performance 

degradation from training to test sets, DeepCreek maintained strong generalization across spatial and 

temporal variability. 

Table 3. Model performance for water level prediction under ungauged conditions. (Scenario test set; 

trained on general sequences vs. event-centered sequences) 

Model Train type MSE(m²) RMSE(m) MAE(m) MAPE(%) R² 

CNN general 0.1714 0.4140 0.3348 44.0969 0.9977 

GRU 11.2852 3.3593 0.3086 9.9442 0.8490 

LSTM 11.5658 3.4009 0.3010 9.5703 0.8452 

Bi-LSTM 11.2670 3.3566 0.3027 12.1142 0.8492 

TSMixer 0.0418 0.2044 0.0757 6.2038 0.9994 

DeepCreek (ours) 0.0280 0.1674 0.0744 9.8377 0.9996 

CNN scenario 0.2202 0.4692 0.2665 28.5412 0.9971 

GRU 11.0610 3.3258 0.4497 40.9548 0.8520 

LSTM 11.5123 3.3930 0.3428 14.4307 0.8459 

Bi-LSTM 11.3556 3.3698 0.4156 28.7043 0.8480 

TSMixer 0.0279 0.1670 0.0602 6.8828 0.9996 

DeepCreek (ours) 0.0267 0.1634 0.0594 6.5205 0.9996 

 

Table 4. Model performance for water level prediction under ungauged conditions. (Extreme scenario 

test set; trained on general vs. event-centered sequences) 

Model Train type MSE(m²) RMSE(m) MAE(m) MAPE(%) R² 

CNN general 1.3433 1.1590 0.5789 37.5395 0.9975 

GRU 105.6633 10.2793 2.2401 18.0697 0.8032 

LSTM 108.3523 10.4092 2.2823 19.3125 0.7982 

Bi-LSTM 106.5497 10.3223 2.2289 19.9348 0.8016 

TSMixer 1.3278 1.1523 0.3395 17.1734 0.9975 

DeepCreek (ours) 1.2223 1.1056 0.2839 17.3792 0.9977 

CNN scenario 2.1563 1.4684 0.6323 30.6445 0.9960 

GRU 103.3975 10.1685 2.4049 41.0707 0.8074 

LSTM 107.7760 10.3815 2.3068 22.2475 0.7993 

Bi-LSTM 106.0554 10.2983 2.3360 30.3467 0.8025 

TSMixer 1.4340 1.1975 0.3012 18.2150 0.9973 

DeepCreek (ours) 1.2072 1.0987 0.2760 15.4311 0.9978 

 

3.3. Case analysis of extreme scenarios 

Although the overall performance gap between DeepCreek and TSMixer was modest, substantial 

improvements emerged under specific extreme conditions. Table 5 presents the top 10 extreme test 

cases where DeepCreek achieved the largest gains, with RMSE over 95%, MAE above 90%. To further 

illustrate these differences, Figure 5 highlights four representative cases. Cases (a) and (b) correspond 



 

 

to actual extreme rainfall events, marked by abrupt and intense rainfall causing rapid water level 

changes. In these instances, DeepCreek successfully tracked the dynamics with stability, whereas 

TSMixer exhibited overshooting and instability. Cases (c) and (d) involve sequences with anomalous 

rainfall inputs exceeding 1,000 mm, likely due to sensor errors or extreme outliers. Despite these 

irregularities, DeepCreek maintained robust performance, while TSMixer experienced significant 

degradation. These findings suggest that DeepCreek not only excels during real extreme events but 

also demonstrates resilience to severe data anomalies—an essential attribute for flood forecasting in 

uncertain and data-scarce environments. 

Table 5. Top 10 performance gains by DeepCreek over TSMixer under extreme scenarios. (unit: relative 

improvement [%]) 

Station name MSE RMSE MAE MAPE R² 

Han River, Inje (Eoduwon Bridge) 99.88 96.48 95.00 95.48 100.06 

Han River, Hoengseong (Anheung Bridge) 99.81 95.70 93.03 93.08 99.89 

Han River, Huyeong Bridge 78.65 55.35 36.89 45.62 195.21 

Seomjin River, Boseong (Boseonggang Dam) 76.98 52.74 57.49 57.48 98.88 

Geum River, Daejeon (Wanchon Bridge) 38.96 22.98 21.64 25.18 219.98 

Han River, Nayangju (Paldang Dam) 72.70 50.43 55.36 55.41 67.78 

Nakdong River, Hamyang (Uitan-ri) 36.22 21.09 19.60 19.23 141.19 

Han River, Seoul (Daegok Bridge) 36.80 21.06 19.40 21.18 55.88 

Taehwa River, Ulsan (Taehwa Bridge) 26.11 15.11 15.19 14.34 31.27 

Geum River, Geumsan (Munam Bridge) 18.55 10.14 21.00 23.54 22.88 

 

Fig. 5. Case studies comparing DeepCreek and TSMixer under extreme rainfall and outlier conditions: 
(a) Taehwa Bridge; (b) Uitan-ri; (c) Anheung Bridge; (d) Eoduwon Bridge. 

4. Discussion 

The superior performance of DeepCreek, particularly under extreme rainfall conditions, stems from its 

architectural enhancements. Expanding both the feature dimensionality and hidden dimensions 

mitigated information loss across mixer blocks, thereby improving stability under noisy fluctuations and 

abrupt changes. DeepCreek’s architecture, which decouples temporal and feature dependencies, 

outperformed sequential models such as LSTM and GRU, which often suffer from overfitting or limited 

adaptability in sparse or highly variable conditions. By effectively handling heterogeneous inputs, 

DeepCreek offers a critical advantage for flood forecasting in ungauged basins. Furthermore, the model  

exhibited stable performance across varying lead times (t+1 to t+6), supporting its scalability across 

spatially diverse locations which enhances its practical utility for real-time deployment. Notably, all 

models were trained and evaluated without explicit outlier removal. Despite this, DeepCreek consistently 

maintained predictive stability across noisy real-world datasets, underscoring its robustness for 

operational use where extensive pre-cleaning is often impractical. 



 

 

These promising results pave the way for further enhancements and broader applications, although 

several challenges remain. The scarcity of accessible data from small streams limited validation in truly 

ungauged basins, as the experiments were primarily conducted on national and regional rivers. Future 

work could enhance model performance by incorporating derived features, such as those extracted 

through frequency-domain decomposition methods like Empirical Mode Decomposition (EMD), to 

further enhance model adaptability to highly hydrological dynamics [16, 26]. 

5. Conclusion 

This study introduced DeepCreek, a lightweight deep learning framework for short-term water level 

forecasting at a nationwide scale, specifically designed for ungauged and under-monitored river systems. 

By leveraging rainfall event-centered inputs and employing a spatially segregated training-testing 

strategy across 232 stations in South Korea, the model effectively simulated real-world operational 

scenarios in data-scarce regions. DeepCreek demonstrated robust predictive performance under 

diverse hydrological conditions, including extreme rainfall events and measurement anomalies, while 

maintaining scalability through the use of commonly available hydrometeorological variables. Its 

architecture, which decouples temporal and feature interactions, led to improved generalization and 

resilience compared to conventional sequential models. The architectural refinements, including the 

expansion of feature dimensionality across mixer blocks and the increase of hidden dimensions in the 

feed-forward network layers, contributed to enhanced model stability under noisy and abrupt 

hydrological conditions. These findings highlight the potential of event-driven, lightweight architectures 

in advancing real-time flood forecasting under increasing climate uncertainties. DeepCreek offers a 

practical and scalable solution for early warning systems, enabling reliable predictions even in regions 

with sparse monitoring infrastructure, and contributing to more equitable, adaptive, and sustainable 

disaster risk reduction strategies. 
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