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ABSTRACT  

Applications for 3D imaging systems (e.g., laser scanners) have increased significantly in the past decade. Data from such 

systems often require registration. Spheres are often used for registration because they look the same from each direction 

and provide well defined reference points: fitted sphere centers. Common practice is to first scan individual targets at high 

density for high accuracy of fitted centers and then scan the entire scene at lower density. This, however, prevents the use 

of 3D imaging systems in a fully automated environment. It would thus be desirable to be able to determine the sphere 

centers from the low density scan. In this paper, we investigate how different scanning densities affect the locations of the 

fitted sphere centers. Analyses of high and low density scans show that high density scans are not necessary because the 

sphere centers can be estimated from sparse data without significant loss of accuracy.  
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1. INTRODUCTION 

Three-dimensional (3D) imaging systems are used 

for surveying, mapping and generation of 3D models 

[1]. 3D imaging systems are line-of-sight instruments 

and therefore parts of a scanned scene which are 

occluded from one scanner location have to be 

obtained from other locations to fill in the missing 

data. Since each scan is in the instrument’s frame of 

reference, individual scans have to be registered to 

one common coordinate frame to provide a useful 

representation of the entire scanned object or scene. 

Registration requires identification of at least three 

points common to all datasets to be registered. These 

common points may be selected by picking points 

from acquired dataset and in this case, the errors of 

their locations are a function of the instrument error 

and the ability to measure the exact same point from 

the two scans. Alternatively, fiduciary objects of 

known shape are placed in a scene to serve as easily 

identifiable targets. Then, the target centers can be 

derived by fitting known geometric primitives to the 

acquired points [2] which then can be used for 

registration. Errors in the locations of the fitted 

centers depend not only on the instrument error but 
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also on the fitting (e.g., a choice of error function). 

For nonlinear minimization, getting explicit values of 

errors may not be trivial.  

Two types of targets are commonly used for 

registration: reflective planar targets and 3D targets. 

Spheres are especially convenient 3D targets 

compared to planar ones because their observed 

shapes do not change with varying viewpoints and 

therefore do not require re-orientation of the target. 

Spheres also allow registration of two datasets with 

little or no overlap and therefore, they give an 

operator more flexibility in choosing the scanner 

location.  

At each scanner location, each sphere target is 

usually scanned individually at high density in order 

to minimize the error in locating the sphere center. 

The remaining scene is often scanned at a lower 

density to reduce the data acquisition time. This 

practice requires independent knowledge of target 

locations and manual intervention of an operator. 

This prevents the use of 3D imaging systems in a 

fully automated manner.  

The elimination of the high-density scans would 

allow for automated processes and save time, thus, 

increasing productivity. This implies that fully 

automated procedures for finding sphere targets in 

large datasets, segmentation of the associated sphere 

points, and fitting of the spheres should be applied 

directly to low resolution scans. An important and 

practical question arises as to how reliably a sphere 

could be fitted to a sparse dataset.  

In this paper, we study the effect of scanning density 

on estimating the fitted sphere center. Spheres were 

scanned at high density (thousands of data points per 

sphere) and low density (tens of data points per 

sphere) at varying distances. At each location of a 

sphere, its center was measured with higher accuracy 

using another type of instrument (total station or laser 

tracker). These more accurate measurements were 

used as ground truth for the sphere centers. In order 

to avoid adding the error caused by registration, data 

acquired in the scanner coordinate frame were not 

registered to the total station (or to the laser tracker) 

coordinate frame. Instead, the relative distance 

between a pair of fitted sphere centers was compared 

with the same distance obtained from the ground 

truth measurements. The difference between ground 

truth and fitted distance was used as a measure of the 

combined error (fitting error and instrument error). 

Due to the nonlinear minimization used for fitting, 

the error of the individual derived center was not 

evaluated.  

2. EXPERIMENT  

Two spheres made of different materials were used: 

one with radius RS1 = 76.2 mm and the other with RS2 

= 50.8 mm. In actuality, Sphere S1 is not a sphere but 

a SMR (Spherically Mounted Retroreflector) (see 

Fig. 1). Sphere S1 was made of aluminum and then 

anodized. Sphere S2 was made of titanium and also 

anodized. 

 

Two scanners belonging to two different classes of 

3D imaging systems were used. Instrument In1 has a 

manufacturer specified range error of approximately 

7 mm (measured at a 100 m range) and maximum 

measurement range of 200 m. Instrument In2 has a 

maximum range of 24 m and a specified range error 

of 0.1 mm for ranges less than 10 m. For ranges 

between 10 m and 24 m, the range error is equal to 

0.01 mm/m times range (in meters).  

The data for this paper came from two experiments. 

In one experiment, Sphere S1 and Instrument In1 

were used. In this experiment, the sphere was 

scanned in seven locations. The ground truth 

measurements were obtained using a total station 

with a manufacturer specified measurement error of 

±0.2 mm. The experimental setup is shown in 

Fig. 2a. The datasets from this experiment will be 

called G1. 

In the second experiment, both instruments, In1 and 

In2, were used to scan Sphere S2. The expanded 

Figure. 1 Sphere S1: a) front view; b) back view 

 

a) b)a) b)
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uncertainty of the ground truth measurements, 

obtained for this experiment with a laser tracker, was 

±30 µm. For the combination of Instrument In1 and 

Sphere S2, the sphere was located in 14 locations, in 

the configuration shown in Fig. 2a. The datasets from 

this combination will be called G2. For the 

combination of Instrument In2 and Sphere S2, the 

sphere was located in 12 locations in the 

configuration shown in Fig. 2b. The datasets from 

this combination will be called G3. 

In both experiments, the spheres were approximately 

collinear with each other and with the instrument. 

 

Every individual j-th dataset (j = A, B, C,…) was 

manually segmented and a sphere of known radius 

was fitted to the point cloud. Segmented datasets 

contained typically between 1200 and 4000 points for 

high density scans and between 6 and 40 points for 

low density scans. Fitting was done by the nonlinear 

Least Squares minimization of the generalized 

directional error function [3]. Then, the relative 

distance FH(k,j) between the two sphere centers Hk 

and Hj fitted to high density datasets k and j was 

calculated 

,),( jkH jkF HH −=   (1) 

where k ≠ j and ||…|| is the Euclidean norm. In a 

similar way, the relative distance FT(k,j) between two 

ground truth sphere locations, Tk and Tj, (measured 

with the total station or laser tracker) was calculated 

(Fig. 3). Finally, the error DH(k,j) of the relative 

distances was calculated as 

.),(),(),( jkTjkFjkD HH −=  (2) 

The same procedure was repeated for the sparse 

datasets acquired with low density scans. Euclidean 

distance FL(k,j) between two fitted sphere centers Lk 

and Lj  was calculated. The resulting error DL(k,j) 

was compared with DH(k,j), to determine the effect of 

scan density.  

In addition, the difference ∆(j) of center Lj from Hj 

was calculated for every j-th sphere 

jjj LH −=∆ )(  (3) 

Both errors, DH(k,j) for high density and DL(k,j) for 

low density scans, may assume either positive or 

negative values while ∆(j) is always greater than 

zero.  

 

In general, the main source of error in 3D imaging 

systems comes from the range measurement: both 

azimuth and elevation angle are determined with 

much smaller error. The error of a fitted sphere 

center (ρ, θ, φ) in spherical coordinates is expected to 

affect only range ρ, while errors in θ and φ are 

assumed to be negligible small. Elongated ellipsoidal 

error functions affect the error of fitted distances 

FL(k,j) and FH(k,j) differently in different 

experimental setups. In this context, the range 

datasets used for this project were collected in the 

worst case scenario: the scanner positions and 

consecutive sphere locations in every group G1-G3 

were collinear. For such scanning configurations, the 

variance of the distance between two sphere centers, 

var(FH(k,j)), is the largest possible and equal to 

Figure 3. Two extreme scanning configurations: a) 

relative distance F(k,j) between the two measured 

points has the largest possible variance; b) the 

smallest 
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Figure 2. Two scanning configurations used in 

the experiments for datasets belonging to group: 

a) G1 and G2, b) G3 
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var(ρj) + var(ρk), see Fig. 3a. For any other 

configuration, including the extreme one shown in 

Fig. 3b, geometry constraints will cause partial 

cancellation of variances var(ρj) and var(ρk). 

3. RESULTS 

Fig. 4 shows the difference between the two sphere 

centers, ∆(j) , fitted to the low and high density scans 

for the seven pairs of datasets belonging to group G1. 

The sphere locations are labeled A through G and the 

distance, d(j), from each sphere center to the scanner 

is also given on the horizontal axis. The distance d(j) 

was set equal to the average of the two distances  

.2/)||||||||()( jjjd LH +=  (4) 

As we mentioned earlier, the uncertainty of the fitted 

sphere center could not be evaluated at this time and 

therefore we are unable to provide uncertainty for the 

difference ∆(j). For reference, the dashed line in Fig. 

4 represents the lower bound of the uncertainty for 

the relative distance between two measured points, 

Ω, which is equal to the 2 times the instrument 

error.  This is a lower bound because Ω consists only 

of the instrument error. For instrument In1, it is equal 

to 9.9 mm.  

In Fig. 5, the errors of the relative distances for all 

possible pairs (k,j) of fitted sphere centers selected 

from G1 are shown. The data in the upper triangle 

(above the black diagonal line, k > j) correspond to 

DH(k,j) for high density scans while data below the 

diagonal (k < j) correspond to DL(k,j) for low density 

scans. Data on diagonal is filled with zeros for 

reference. Fig. 6 shows ∆(j) for the 14 pairs of 

datasets constituting G2. Dashed line corresponds to 

the same lower bound of error as in Fig. 4.  

Fig. 7 displays DH(k,j) (above the diagonal line) and 

DL(k,j) (below the diagonal line) for G2. Again, 

points on the diagonal were assigned zero values for 

reference. The dashed line corresponds to the same 

lower bound of error as in Fig. 4. Fig. 7 displays 

DH(k,j) (above the diagonal line) and DL(k,j) (below 

the diagonal line) for G2. Again, points on the 

diagonal were assigned zero values for reference. 

 

 

 

 

 

 

Figure 6. Difference ∆(j) vs. distance d(j) for 

datasets in group G2 
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Figure 4. Difference ∆(j) vs. distance d(j) for 

datasets in group G1 
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Figure 5. Errors, DH(k,j) and DL(k,j), for group G1: 

high density above diagonal and low density below 

diagonal, varying between -8 mm and +4 mm 
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Fig. 8 presents difference ∆(j) for group G3. Datasets 

in this group were acquired in the configuration 

shown in Fig. 2b. While the scanner position 

remained fixed, the scanning direction for datasets A, 

B and C was flipped by 180º to the scanning 

direction for the rest of datasets in this group. 

Therefore, the distance d(j) defined by (4) is now 

negative for j = A, B and C. The lower bound of the 

error for the relative distance for instrument In2 is 

0.14 mm ( 2  x 0.1 mm).  

 

Fig. 9 shows the errors DH(k,j) (above the white 

diagonal line) and DL(k,j) (below the diagonal line) 

for G3. Again, points on the diagonal were assigned 

zero value for reference. 

The data shown in Fig. 7 as the first column DH(A, n) 

and the first row DL(n, A) are reproduced in Fig. 10 

where the values are plotted against the distances 

between the true sphere center A and the remaining 

true centers n = B, C, …, N. Similarly, the data from 

Fig. 9 are redrawn in Fig. 11, i.e. errors DH(A, n) and 

DL(n, A) against the distances between the true 

sphere center A and the remaining true centers n = B, 

C, …, L. 

 

4. DISCUSSION AND CONCLUSIONS 

For all three groups G1-G3, the differences ∆(j) as 

well as the  errors DH and DL are comparable to the 

error of relative distance between two data points 

acquired with the given 3D imaging instrument. This 

means that using the derived sphere centers as points 

for registration is at least as good as the selection of 

individual points from the datasets.  We expect that 

the uncertainty associated with the former method to 

be less than the latter method which includes 

instrument error and the ability to select the exact 

same points in two datasets. However, this requires 

further study into determining the uncertainty of the 

fitted center. For most pairs (k,j), the error DH 

calculated for the high density data set is only 

slightly less than the corresponding DL for the low 

density data (see Figs. 10 and 11). In fact, for about a 

third of all pairs DH is larger than DL (33 % of pairs 

for G1, 41 % for G2 and 35 % for G3). Thus, in most 

cases, the scanning density had little impact on the 

location of derived sphere centers. Figs. 5, 7 and 9 

also reveal a well defined pattern for the dense and 

Figure 8. Difference ∆(j) vs. signed distance d(j) 

for datasets in group G3 
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Figure 7. Errors, DH(k,j) and DL(k,j), for group G2: 

high density above diagonal and low density below 

diagonal, varying between -12 mm and +2 mm 

Figure 9. Errors, DH(k,j) and DL(k,j), for group 

G3: high density above diagonal and low density 

below diagonal, varying between -0.1 mm and 

+0.6 mm 
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sparse datasets: generally, the larger the distance 

between sphere centers, the larger the errors DH and 

DL are (Figs. 10 and 11). As expected, the errors DH 

and DL increase as the distance between sphere 

centers increases because the range error typically 

increases with distance. The variations of ∆(j) do not 

follow this same pattern and we do not understand 

why this is so. This will require further investigation.   

The data shown in Figs. 5 and 7 reveal that most of 

errors have negative values while most of the data in 

Fig. 9 have positive values. One may expect that 

differences from ground truth should be random, i.e., 

both positive and negative signs should be equally 

frequent.  

 

Negative DH defined by (2) means that the distance 

FH(k,j) between the pair of spheres is systematically 

underestimated, which leads to the conclusion that 

the corresponding fitted sphere centers yield 

underestimated ranges ||Hk|| and ||Hj|| (the same is 

true for DL and ||Lk||, ||Lj|). For the data shown in Fig. 

9, the opposite trend is evident: DH and DL are mostly 

positive which indicates that the fitted sphere centers 

yield overestimated ranges ||Hk|| and ||Hj|| (and the 

same is true for ||Lk|| and ||Lj||). One explanation of 

this effect is that the instrument systematically under- 

or over- estimates the range due to offsets within the 

instrument itself. All datasets in group G1 and G2 

were acquired with instrument In1 while all datasets 

in G3 were collected with In2.  

While the errors DL(k,j) and DH(k,j) give a direct 

indication of how the derived distances FL(k,j) and 

FH(k,j) differ from ground truth, the difference ∆(j) is 

not related to ground truth. Instead, it quantifies the 

sensitivity of the fitted sphere center to variations in 

the dataset.  

Keeping in mind the large difference in the number 

of points between the dense and sparse datasets 

(more than two orders of magnitude), the differences 

∆(j) shown in Figs. 4, 6 and 8 reveal a robustness of 

sphere fitting procedure.  

 

In summary, the presented data support the 

conclusion that, in most cases, the scanning density 

had little impact on the determination of the derived 

sphere centers. Thus, high density scanning of sphere 

targets may not be necessary. The elimination of this 

step will increase the efficiency of the scanning 

process. The results indicate that the centers of the 

spheres fitted to the sparse data can be determined 

without significant loss of accuracy as compared to 

the centers obtained from fitting high density data. 
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Figure 10. Errors DH(A, n) and DL(n, A) for G2 
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Figure 11. Errors DH(A, n) and DL(n, A) for G3. 
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