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ABSTRACT 

The solution of the inverse kinematics is required in many technical applications. In this contribution a concept is proposed 

which reformulates the inverse kinematics (IK) of kinematically redundant manipulators as a linear programming (LP) 

problem. This formulation enables the explicit consideration of technical constraints as for example mechanical end-stops, 

velocity and, if necessary, acceleration limits as linear inequality constraints. Besides that, automatic collision avoidance 

within the workspace of the manipulator can be included. The kinematic redundancy is resolved with respect to quadratic 

criteria. As the LP problem at hand belongs to the small-size problems, the optimal solution can be found numerically in 

appropriate time using standard algorithms such as the simplex algorithm or interior point methods. This article closes with 

a numerical example of the LP-IK of a planar 4-link manipulator. 
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1. INTRODUCTION 

Many technical applications require the solution of 

the inverse kinematics (IK) problem of kinemati-

cally redundant manipulators, i.e. manipulators 

whose number of mechanical degrees of freedom 

(DOF) is greater than the DOF of the tool center 

point (TCP). Examples are construction machines, 

where the operator wants to move a tool attached to 

the end-effector to the area of operation. However, 

to this day the IK problem of choosing appropriate 

actuator configurations, for example of hydraulic 

cylinders, is often solved manually by experienced 

operators. Therein, the operator has to define a map 

from Cartesian end-effector coordinates to joint 

coordinates of the manipulator at any instant of time. 

For an operator it is more intuitive and hence easier 

to command the end-effector than to command the 

joints of the manipulator individually. This benefit 

becomes more and more evident with an increasing 

number of joints, i.e. with increasing kinematical 

redundancy. On the other hand, redundancy is often 
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required in order to account for obstacles in the 

workspace and therefore to avoid collisions. 

To overcome this difficulty algorithmic solutions to 

the IK problem are desired. The concept proposed in 

this contribution formulates inverse kinematics as a 

linear programming (LP) problem. This formulation 

offers the explicit consideration of technical bounds 

in form of linear inequality constraints. Examples 

for technical constraints are mechanical end-stops as 

well as velocity and acceleration limits which are 

taken into account during the process of 

optimization. The main task of moving the end-

effector from its actual to a desired position (and 

orientation) is realised by the concept of “affine 

manipulability”, originally introduced by Schlemmer 

in [1]. The kinematical redundancy is resolved by 

minimizing a quadratic criterion using the Lagrange 

Function such that the solution delivers a feasible 

manipulator configuration. Moreover automatic 

collision avoidance can be included by applying 

potential fields according to [2]. 

2. RELATED AND PREVIOUS WORKS 

This section shortly discusses common methods for 

solving the IK which constitute the basis for the 

concept explained in section 3. 

In general, setting up the analytical forward 

kinematics of a serial-link manipulator 

)(qw ϕ= , (1) 

where mn ℜ→ℜϕ : , nℜ∈q  is the vector of 

manipulator joint coordinates and 
mℜ∈w  is the 

vector of position and orientation of the end-effector 

is a trivial task. 

2.1. Classical approach 

As ϕ  is generally a nonlinear vector function the IK 
is usually solved by approximating (1) using the 

Taylor expansion of ϕ   and disregarding the terms 
of order higher than 1, such that 

)( 00 qqJww −≈−  (2) 

with )( 00 qw ϕ= . Here 
nm×ℜ∈J  denotes the 

Jacobian matrix which has a rectangular shape for 

redundant robots and is therefore not invertible.  

To overcome this redundancy, a quadratic cost 

function  

qfqqMqqq TTZ −−−= )()()( 002
1 , (3) 

is introduced [3]] 

where 
nn×ℜ∈M  is a positive definite weight 

matrix and 
1×ℜ∈ n

f  is a weight vector. Together 

with the kinematical constraint according to (2) 

)()()( 00 wwqqJq −−−=N  (4) 

the Lagrange function 

)()(),( qλqλq NZL T+=  (5) 

can be set up. The necessary condition for a local 

minimum is 
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This leads to the linear system of equations 
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which can then be solved efficiently as the matrix on 

the left hand side is usually sparse.  

One choice of M could be the mass matrix but 

usually is chosen as a diagonal weighting matrix. 

According to Komainda [3] the vector f can be 

regarded as an artificial generalized force which can 

be used for influencing the null space motion. If M 

is the identity matrix, f the zero vector and (7) is 

resolved for q, the IK equation 

)( 00 wwJqq −=− +  (8) 

is obtained where 

1)( −+ = TT JJJJ  (9) 
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is the well-known Moore-Penrose pseudo-inverse 

matrix.  

2.2. Nonlinear programming approach 

However the method shown above does not 

guarantee the provision for technical constraints. In 

fact, the motion of a joint near its limits strongly 

depends on the potential function f, if an artificial 

force is engaged. For this reason in Error! 

Reference source not found. and [4] IK is 

formulated as a nonlinear programming problem 

(NLP). Besides taking the technological constraints 

into account it is possible to apply the nonlinear 

forward kinematics according to (1) as side 

conditions. Hence, the IK can be solved numerically 

exact as the forward kinematics is not linearized 

according to (2). 

In the following Schlemmer’s [1] concept of “affine 

manipulability” is discussed because it forms the 

basis of the approach presented here.  

Firstly, a quadratic criterion as cost functions to be 

minimized subject to the nonlinear forward 

kinematics is presented. While the quadratic criteria 

resolve the redundancy, the affine manipulability 

criterion (Fig. 1) moves the end-effector from 0w  

to a similar, i.e. affine feasible position and 

orientation feasiblew . Thereby, w may contain 

position and/or orientation of the end-effector. 

 

Figure 1. Affine Manipulability according to [1] 

The relationship between feasiblew  and desiredw  

can then be formulated as 

)( 00 wwww −=− desiredfeasible p , (10) 

where p is the affine manipulability indicator or 

dexterity. Thereby, it is reasonable to restrict p such 

that 10 ≤≤ p , in order to prevent the end-effector 

from moving in the opposite or beyond the desired 

direction. It is obvious that the optimum, i.e. 

maximum is reached if 1=p , so that 

desiredfeasible ww = .  

The nonlinear problem can then be solved by a 

Sequential Quadratic Programming (SQP) algorithm 

[1]. However, solving NLP problems is 

computationally expensive. 

2.3. Linear programming approach 

It is worth noting that Schlemmer already proposes 

the following LP1 problem with respect to affine 

manipulability: 

}{max1
,

pLP
pq

=  (11) 

subject to 

0wwqqJ =−−− )()( 00 p  (12) 

10 ≤≤ p , maxmin qqq ≤≤  (13) 

and further bounds with respect to velocity such as 

TT ∆≤−≤∆ max0min qqqq && , (14) 

where T∆  denotes the discrete time interval. 

This proposal delivers an effective alternative for the 

IK at velocity level as the LP problem can be solved 

effectively with the well-known simplex algorithm 

or interior point methods. However, the motions that 

are calculated suffer from jittering as can be seen in 

Fig. 3. Another approach of solving the IK with LP 

can be found in Ho [5]. Here the main idea is to 

define the cost function as the sum of absolute 

values of the elements in 0qqq −=∆ , i.e. 

1
min q∆  which then has to be minimized subject to 

(2). 

3. LP APPROACH 

Motivated by Schlemmer’s affine manipulability, 

here an LP formulation which considers the 

minimization of the quadratic cost function stated in 

(3) in order to overcome the jittering of LP1 is 

proposed. For this purpose the constraint in (4) is 

modified according to (12) which leads to  

feasiblew

0w

desiredw
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0wwqqJq =−−−= )()()( 00 pN , (15) 

where p is the affine dexterity and is regarded as a 

parameter, not a variable. In the next step the 

Lagrange function is set up, differentiated and set to 

zero as described in section 2.1. Hence, the linear 

system of equations 
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is obtained. From now on p is considered to be a 

variable that has to be maximized and by 

rearranging (16) we finally the following LP2 

problem 

}{max2
,,

pLP
pλq

=  (17) 
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10 ≤≤ p , +∞≤≤−∞ λ , maxmin qqq ≤≤  

and further constraints at velocity level is obtained. 

3.1. Controlling smoothness of motion  

One can additionally influence the manipulator’s 

null space motion by adding the quadratic function 

)()()(
2
1

2 ref
T

refZ qqΛqqq −−=  

to the cost criterion such that the following side 

conditions hold 
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Here 
nn×ℜ∈Λ  is a diagonal weighting matrix with 

positive diagonal elements and refq  is a reference 

point in joint space, which may be defined as the 

midpoint between the joint limits [1]. This definition 

leads to joint configurations, which lie far apart from 

the joint limits and consequently increase the 

manipulability. 

3.2. Singularity 

Near singularities the joint velocities tend to have 

high values in spite of relatively small end-effector 

velocities. Even though the joint velocities are 

limited, it still causes jittering (Fig. 8). Komainda [3] 

proposes a modified side constraint where (4) is 

extended by Iλk , such that (7) changes to  













−+

+=




















)( 00

0

wwJq

fMq

λ

q

IJ

JM
TT

k
. (19) 

Due to this extension the matrix on the left hand side 

of (19) cannot become singular for 0≠k . For this 

reason [3] refers to this as the robust inverse where k 

is the manipulability measure due to Yoshikawa [6]. 

However the effort for calculating k is high.  

It is fact that the Lagrange multiplier λλλλ tends to have 
high values near singular configurations. For this 

reason limiting λλλλ by 

maxmin λλλ ≤≤  

may also prevent the jittering effect as can be seen in 

Fig. 9. The choices for minλ  and maxλ  are subject 

to further research. 

4. SIMULATION RESULTS 

The following section evaluates the proposed LP-IK 

applied to a redundant 4-link planar manipulator 

(Fig. 2).  

 

Figure 2. Redundant 4-link planar manipulator 

From the initial configuration as shown in Fig. 2 the 

main task is to pull in the end-effector horizontally. 

Furthermore, to demonstrate the engagement of joint 

limits, the first joint is limited to °= 951max,q . 

x 

y 



 179

 

Figure 3. x-y-motion of the manipulator according to LP1 

It can be seen that the main task, i.e. pulling in the 

end-effector, can be realized. However, the 

trajectories in joint space are jittering (Fig. 3 and 4a). 

 

 

Figure 4. a) Joint space motion according to LP1, b) Joint 

space motion due to LP2 

In Fig. 4b one can see, that using LP2 due to the 

quadratic cost function, the jittering vanishes and 

technically reasonable motions are generated besides 

fulfilling the main task (Fig. 5). Moreover, the 

constraint of the first joint is maintained such that 

the end-effector cannot move in any further.  

 

 

Figure 5. x-y-motion of the manipulator according to the 

proposed approach LP2 

Accordingly the affine manipulability indicator p 

shows, that it is not possible anymore to maintain 

the desired end-effector motion as p nearly reaches 

zero (Fig. 6). 

 

Figure 6. Affine dexterity according to the proposed 

approach 

In the following the TCP is supposed to be moved 

from the initial configuration (Fig. 2) to an edge 

singularity (Fig. 7). 

 

Figure 7. Displacement to an edge singularity 

In this simulation one can see the influence of the 

Lagrange multipliers. Near edge singularities the 

Lagrange multipliers tend to have high values which 

cause a jitter effect (Fig. 8 at t=100). 
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Figure 8. joint motion near singularity 

By limiting the multipliers it is possible to prevent 

the jitter effect as can be seen in Fig. 9. Furthermore, 

the affine dexterity tends to zero. 

 

 

Figure 9. Dexterity and joint motion near singularity due 

to limited Lagrange multipliers 

5. CONCLUSION 

In this paper a concept for solving the inverse 

kinematics of redundant manipulators by 

formulating a linear programming problem is 

presented. It was shown that the solution of this LP 

problem leads to technically feasible results as 

quadratic criteria are taken into account. The affine 

dexterity is a possible concept to characterize the 

current manipulability of the manipulator. It can 

provide a beneficial tool in terms of human-machine 

interfaces (HMI). By limiting the Lagrange 

multipliers the numerical instability in the proximity 

of singular configurations can be overcome. This 

leads to smooth motions near the singularities. But 

finding adequate values for minλ  and maxλ  is still 

part of current research. Finding the solution of such 

LP problems can be done in appropriate time, as for 

example by the simplex algorithm, because the 

problems at hand belong to the small size problems.  
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