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Abstract 

Visual analysis of the built environment plays a critical role in the Architectural, Engineering, 

Construction, and Operation (AECO) sector. This type of analysis enables detection of visible 

discrepancies between the as-is and as-planned states of an asset to support proper decision making 

for different managerial and operational applications, such as construction progress monitoring and 

quality control. However, traditional approaches rely on manual inspections and expert knowledge, 

which can be time-consuming, error-prone, and labor-intensive. Therefore, automated detection of 

target objects within the visualizations is paramount. Recent advancements in computer vision and deep 

learning fields have enhanced automation of visual analysis, yet conventional deep learning approaches 

require large and well-annotated datasets, which may be challenging to develop. Alternatively, Few-

Shot Learning (FSL) offers a promising solution by enabling the identification of regions of interest with 

minimal labeled data. This study investigates FSL, namely Prototypical Networks (PNs), to address the 

challenge of data scarcity in the indoor built environments, where the diversity of objects is high and 

data scarcity is a significant obstacle for effective training of conventional deep learning techniques. The 

method is evaluated on a custom dataset of AECO-specific indoor objects, achieving an average 

accuracy of 87.33% across three different tested folds of novel classes. The results indicate that the 

method enables the identification of unseen objects with rapid adaptation to new environments and 

tasks, while requiring only a limited number of labeled examples per class, thereby contributing to a 

significant reduction in time and effort required in real-world industry applications. 

Keywords: Computer Vision, Few-shot Learning, Prototypical Networks, Object Detection, Indoor Built 

Environment Management. 
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1. Introduction 

Construction jobsites are characterized by their dynamically changing environment, and this 

necessitates accurate and timely analysis of as-is against as-planned conditions [1] to support informed 

decision-making and resource allocation in construction projects [2]. Computer vision (CV)-based 

technologies have gained substantial attention in this field thanks to advances in data capturing, storage, 

and processing methods with lower cost and less time required [3]. Many research efforts proposed CV-

based methods to detect physical changes in the jobsites for various purposes, such as construction 

progress monitoring [4], [5] and quality control [6], [7]. 

Recent advances in deep learning (DL)-based methods have enabled CV approaches to achieve high-

level performances in various visual tasks, such as detection of object/regions of interest (ROIs) and 

classification [8]. Real-time progress monitoring has benefited from CV-based analysis, mostly by deep 

neural networks, providing information about workers’ behaviour and equipment productivity as well as 

estimating work progress [9]. CV-based analysis has also been employed for post-construction analysis 

and management, where continuous monitoring is necessary to ensure the physical viability of the 

building components or condition assessment inspections [10], [11].  

Despite these advances, DL-based methods face certain challenges to provide reliable results about 

the as-is state of built environments. For example, their performance heavily depends on the quantity 

and quality of the available data, which poses implementation challenges in environments where objects 

are unique and data is scarce, such as construction environments. Namely, indoor built environments 



 

(IBEs) contain diverse range of objects which often lack adequate representation in existing datasets 

[12]. Additionally, reliance on expert knowledge and high annotation costs limit the scalability of these 

methods. Therefore, other CV-based approaches, such as FSL, have been actively investigated for their 

potential to handle different ROIs with limited data [8]. Given the need for semantic identification of 

various unique ROIs for comparative analysis of the as-is and as-planned states of an IBE with limited 

data, FSL offers a promising solution by classification of novel classes using only a few labelled 

examples. 

Since the research works on FSL applications in IBEs are limited [13], this paper investigates FSL-based 

techniques for classifying elements in IBEs based on datasets with limited samples. This approach can 

facilitate further semantic information extraction during and post construction phases with the final goal 

of detecting discrepancies in as-is and as-planned states. This approach can transform the vision-based 

analysis by reducing time and costs associated with data collection and labelling, thereby enhancing the 

practical usability of vision-based systems in IBEs with diverse classes. The remainder of the paper is 

structured as follows: Section 2 reviews relevant works on DL-based and FSL applications for 

managerial and operational tasks within the built environment management field. Section 3 describes 

the proposed workflow and utilized methods. Section 4 outlines the experiments and discusses their 

results. Finally, Section 5 concludes the study and suggests directions for future research. 

2. Background 

2.1. Deep learning methods for object classification in AECO 

Several CV-based methods have been developed to extract information from images and videos of 

construction jobsites. Early approaches utilized traditional image processing algorithms that 

necessitated feature engineering [14], such as Histogram of Oriented Gradients and background 

subtraction techniques [15]. While initial studies on vision-based progress tracking and monitoring with 

image processing were improved by employing machine learning techniques like Support Vector 

Machines [16], DL-based methods significantly expanded the applications of CV systems by their 

capability of processing substantial amount of unstructured data. Object/ROI recognition is required in 

many construction management tasks, such as progress monitoring, safety management, and quality 

control of the works/material [17]. DL-based methods have demonstrated superior performance over 

traditional methods in identifying objects/ROIs through classification, detection, semantic, and instance 

segmentation techniques. Various tasks have benefited from DL-based approaches, such as detecting 

no-hardhat workers for safety monitoring [18] or classifying construction resources to enable real-time 

monitoring of a construction site's status [19]. Additionally DL-based methods have been implemented 

to automate job-type classification for organizing visual records [20] and to detect discrepancies between 

as-built and planned structures using U-Net-based segmentation [21]. However, these methods were 

majorly constrained by limited data and viewpoint dependency, which were partially mitigated through 

data augmentation techniques. 

The background studies highlight that the accuracy of deep learning models depends on the quantity 

and quality of the training data, and the accuracy of their annotations [22], which all can be challenging 

to attain in the context of IBEs. This is due to the diversity and specificity of the dynamic construction 

environments with unseen classes where there is not enough publicly available data for training [19]. 

Additionally, DL-based methods may encounter hardware limitations, including increased detection and 

training times, as well as high computational costs, limited memory, and system freezing. While certain 

techniques, such as image resizing and compression during preprocessing, can alleviate these 

computational constraints, they may limit the overall accuracy of the models [23]. 

2.2. FSL methods in AECO 

Novel CV-based techniques, including FSL, have emerged as promising solutions to overcome the 

challenge of data scarcity and are getting attention in the AECO field. A recent work [24] explored the 

use of FSL for façade defect detection and its performance improvement by extensible classifier and 

contrastive learning, demonstrating its potential to classify novel defect types with limited training data 

with about 82% accuracy. Pozzer et al. [25] extended the application of FSL to identify ROIs in 

multimodal images, including thermographic and visible images used for detecting subsurface damages 

in concrete structures, which typically require specialized expert knowledge. With the aim of reducing 

false positives in detected delamination, the rate of false positive detections reduced, and the mean 

precision increased by 3.8% with 500 pairs of images. FSL methods have shown promise for recognizing 

dynamic and temporary objects in construction environments. Built upon Yolov2 model, Kim et al. [26] 

achieved promising performance in vision-based monitoring of construction sites using an FSL model 



 

with 1-30 images per class, with a mean Average Precision of 73%. Similarly, Liang et al. [9] introduced 

a tailored FSL approach that utilized a multi-modal prototype technique to effectively classify temporary 

objects on construction sites with limited data.  

Semantic identification of safety issues in construction jobsites is another field that has benefited from 

FSL methods. While conventional CV-based methods face implementation challenges in identifying 

diverse hazard scenarios, FSL techniques have shown promise in detection with imbalanced and limited 

data distributions. Wang et al. [27] proposed an FSL object detection method to deal with imbalanced 

distribution of objects and further developing an attribute recognition enabling semantic understanding 

of the safety measurements and regions of fall protection. Using a limited data size of 1098 images, they 

achieved 51.8%, 88.2% average precision on 10 shots and 50 shots, respectively. 

2.3. Knowledge gap 

DL methods require a significant amount of training data and are specifically used to classify unseen 

images of the same classes that were used during the training process. While FSL methods have been 

applied to address the challenges of limited data availability, complex data labelling, and imbalanced 

object distributions in previous AECO studies, their applications have mostly been limited to specific 

domains, such as safety monitoring or material defect detection. There is a lack of research focusing on 

using FSL methods to identify building elements to facilitate automated monitoring in indoor built 

environments during and post construction. This represents a gap in the literature, as the ability to 

classify diverse building elements with limited training data is beneficial for streamlining the discrepancy 

detection process in IBEs. Therefore, this research investigates the performance of the FSL approach 

and the extent of accuracy to classify the objects of interest with limited data to contribute toward 

comparative analysis of as-is and as-planned states. 

3. Proposed method 

Given the diversity and uneven distribution of object classes in IBEs, particularly pertinent to the 

construction monitoring and quality control applications, the proposed system implements FSL to 

classify the objects/ROIs with limited data available. Popular FSL methods include metric-based, 

optimization-based, and model-based techniques [28]. Considering the pros and cons of each approach 

as outlined by [28], this study initiated with metric-based methods, as they are easier to train and 

computationally efficient. Specifically, Prototypical Networks (PNs) [29] were selected due to their 

outperformance on general image classification tasks compared to other metric-based methods [30]. 

This research investigates the applicability and effectiveness of PNs for classifying AECO-specific 

objects within IBEs. Although future studies could explore alternative FSL approaches to further 

understand and expand application potentials in this domain. 

3.1. Definition of Few-shot classification task and dataset 

Meta-learning, often described as "learning to learn," equips a model with the ability to adapt rapidly to 

new tasks by using prior knowledge, optimizing a set of parameters for performance across episodes or 

tasks. In the context of FSL, this distribution comprises N-way K-shot tasks, where N represents the 

number of classes and K the number of support examples per class. Metric-learning complements this 

process by focusing on developing a robust sense of "distance" or "similarity" between examples, 

enabling the model to identify patterns and distinctions among new examples. Combining meta-learning 

with metric learning—referred to as "meta-metric learning" [28] —further empowers the model to classify 

novel instances during testing without altering its underlying parameters.  

Given a dataset D = {(𝑥1, 𝑦1), …, (𝑥𝑖, 𝑦𝑖)}, where 𝑥𝑖 represents the features of an example, and 𝑦𝑖 denotes 

the corresponding class label, the classes are divided into training set 𝑁𝑡𝑟𝑎𝑖𝑛 and testing set 𝑁𝑡𝑒𝑠𝑡 used 

during the meta-training and meta-testing phases, respectively. Each learning episode comprises a 

support set and a query set, both constructed from the same N classes. The support set consists of K 

labelled examples per class and serves as a reference for the model to learn class-specific features. 

The query set, containing additional unlabelled examples from the same classes, is used to assess the 

model’s ability to classify based on the learned similarity space. 

During meta-training, the model engages in tasks designed to refine its ability to measure similarities, 

positioning examples from the same class closer in feature space while separating those from different 

classes. This learned metric serves as the foundation for classification during meta-testing, where the 

model is presented with entirely new classes from 𝑁𝑡𝑒𝑠𝑡. In this phase, the model’s generalization 

capability is evaluated by its performance on classifying unseen examples using only a limited number 

of support instances, without prior exposure. 



 

3.2. Few-shot Learning model 

PNs aim to learn a prototype representation for each class in each episode and use these prototypes to 

classify query samples based on their proximity to these representations in an embedding space. The 

definition of FSL task based on meta-metric learning setup and the dataset in this study are illustrated 

as an instance of 3-way 2-shot task in Figure 1Hiba! A hivatkozási forrás nem található.. In this 

instance, there are 3 classes with two supporting samples in each episode. 

 

Figure 1: The definition of FSL and distribution of episodes for PNs in meta-metric learning; 
3-way 2-shot task 

During meta-training, PNs learn a robust embedding function that can map examples from different 

classes into an embedding space. This process involves training the model across many few-shot tasks, 

where each task has its own support and query sets. For each task, the model processes the support 

set examples to produce embeddings through a feature embedding function 𝑓𝜃, resulting in the mean 

embedding for each class called the "prototype" 𝑃𝑐, computed as: 

𝑃𝑐 =  
1

𝐾
∑ 𝑓𝜃(

(𝑥𝑠,𝑦𝑠) ∈ 𝑆𝑐

𝑥𝑠)  (1) 

where  𝑆𝑐 is the support set for class C. This prototype serves as a representative point for each class 

C within the task. Over many tasks, the embedding function is optimized to produce prototypes that are 

distinctive and separable, allowing the model to generalize better when encountering new classes. 

In the metric learning phase, PNs perform similarity measurement between prototypes (representing 

each class in the support set) and the embeddings of query samples. A distance metric is calculated 
between the embedding of each query sample 𝑥𝑞 and each class prototype  𝑃𝑐, using a Euclidean 

distance metric, as has been shown to significantly enhance performance in PNs [29]. The query sample 

is then classified based on the nearest prototype, enabling fast classification. The distance 𝑑𝜃 between 

the embedded query 𝑓𝜃(𝑥𝑞) and the 𝑃𝑐 is computed by: 

𝑑(𝑓𝜃(𝑥𝑞), 𝑃𝑐) = ‖𝑓𝜃(𝑥𝑞) − 𝑃𝑐‖
2
  (2) 

For each query sample 𝑥𝑞 in class C, the probability of query sample belonging to class C is computed 

using the SoftMax function applied to the negative distance: 

𝑃(𝑦 = 𝐶|𝑥𝑞) =  
𝑒𝑥𝑝(−𝑑(𝑓𝜃1

(𝑥𝑞), 𝑃𝑐))

∑ 𝑒𝑥𝑝(−𝑑(𝑓𝜃1
(𝑥𝑞), 𝑃𝑐))𝑐′

  (3) 

The total loss for the episode is computed by maximizing 𝑃(𝑦 = 𝐶|𝑥𝑞) for matching class pairs and 

minimizing it for non-matching pairs, using the negative log-likelihood: 

𝐿 =  − ∑ 𝑙𝑜𝑔 𝑃(𝑦 = 𝑦𝑞|𝑥𝑞)

(𝑥𝑞,𝑦𝑞)∈𝑄

 (4) 

During testing, PNs sample episodes with classes from the test set 𝑁𝑡𝑒𝑠𝑡 and the model's performance 

is assessed based on its classification accuracy on N-way K-shot tasks. The model relies on computing 

a prototype for each class in the embedding space based on the support set and query samples are 

classified by determining their proximity to these prototypes using the distance metric. The final output 



 

is the average classification accuracy across all episodes, which serves as an indicator of the model’s 

generalization to novel classes. 

4. Experimental results and discussion 

4.1. Dataset development 

The dataset used in this study consists of indoor building elements collected from various sources 

pertinent to AECO industry. Real-world images were sourced from under-construction and post-

construction sites captured by the authors and from publicly available resources such as Flickr and 

Google. This dataset contained 25 main object classes commonly found in IBEs, each with a varying 

number of instances, as provided in Figure 2. To make the sample images compatible with the FSL 

model, they underwent transformations including resizing to a standard input size (i.e., 224x224 pixels), 

colour jittering, and normalizing the pixel values. This preprocessing ensured consistency in the image 

dimensions and format, enabling the FSL model to work optimally with the inputs. 

 

Figure 2: Distribution of images within the classes in the dataset 

4.2. Implementation details 

According to the theory of FSL, the model performance is related to the generation of episodes. Three 

different folds of base and novel classes were implemented, as performance may vary depending on 

novel class selection [27]. The 25 object classes were randomly divided into 20 base classes for training 

and 5 novel classes for testing in each fold. Across the three folds, a total of 15 classes were designated 

as novel classes, with no overlaps between the folds. The novel classes for Fold-1 were classes 0, 2, 9, 

17, and 21; for Fold-2, the novel classes were 1, 11, 13, 18, and 20; and for Fold-3, the novel classes 

included 3, 10, 14, 15, and 23. 

The integration of PNs with ResNet-18 has shown strong few-shot classification performance [31]. 

ResNet-18’s lightweight architecture offers an optimal trade-off between computational efficiency and 

classification accuracy, making it well-suited for this study. Given that pre-trained deep neural networks 

for feature extraction improve the classification performance [30], this study investigated FSL with 

ResNet-18 as the feature extractor pre-trained on ImageNet [32]. The hyperparameters were tuned with 

respect to the easyFSL [33], a comprehensive open-source FSL library. The model was trained over 80 

epochs and the SGD optimizer with the adaptive learning rate scheduling was used. The training process 

was implemented using the PyTorch library and was executed on Google Colab using an A100 GPU. 

4.3. Few-shot performance on IBE classification 

The performance of the proposed approach was evaluated using the standard classification accuracy 

metric on the test set with a 5-way 5-shot task. The classification accuracy is defined as the ratio of 

correctly classified query samples to the total number of query samples evaluated during the testing 

process, and the results of these three folds are presented in Figure 3. The overall accuracy of the PNs 

in the 5-way 5-shot scenario averages at 87.33%, indicating a promising baseline performance in 

handling few-shot learning tasks across various object classes. This metric highlights the model's 

general capability to understand and categorize new objects based on a limited set of examples, 

highlighting its potential utility in environments where quick adaptation to new data is essential. The 

accuracy variations across folds—with the highest in Fold-3 and the lowest in Fold-2— underscore the 

model's response to different sets of class combinations. The highest accuracy observed in Fold-3 at 

89.55% suggests that the combination or type of classes in this fold may have been inherently more 

distinct or easier for the model to differentiate, potentially due to clearer or more characteristic features. 
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On the other hand, the lower accuracy of 84.47% in Fold-2 indicates a more challenging set of classes. 

This could be due to factors such as the presence of classes with similar features, less distinctive 

objects, or a combination of classes that do not contrast as sharply in the feature space defined by the 

model. 

 

Figure 3: Classification accuracies of PNs on novel classes over the three different folds 

The inherent challenges in each fold prompted further investigation. Confusion matrices were generated 

for the three data folds under the 5-way 5-shot experimental setup to further analyze the performance 

of PNs in classifying various AECO-specific objects in IBEs. Figure 4, provides a detailed view of the 

model’s classification behavior by depicting how often each class was correctly or incorrectly predicted 

across the folds. Notably, Window (Class 15), Fire Exit Sign (Class 20), and Baseboard (Class 21) 

achieved the highest correct classification rates in their respective folds—96.24%, 98.46%, and 

96.84%—indicating their strong visual separability. The confusion matrices show that these objects, 

likely due to their distinctive geometric features or unique positioning within the environment, were 

consistently recognized by the model with minimal misclassification. In contrast, certain classes such as 

Socket (Class 11) and Switch (Class 13) experienced higher rates of confusion, particularly in Fold-2, 

which indicate challenges in distinguishing between objects with visually similar features. Additionally, 

misclassification between Pipe (Class 9) and Column (Class 0) further underscores the limitations of 

relying solely on visual features, especially when dealing with elements that share similar shapes, 

textures, or spatial configurations. Figure 5 illustrates some instances with possible sources of failures. 

These findings suggest that, while PNs performance may decline when faced with visually ambiguous 

or structurally overlapping classes, incorporating contextual information or multimodal data may 

therefore be necessary to improve differentiation in such cases. However, PNs still demonstrated robust 

performance by achieving 87% accuracy matching or exceeding prior FSL studies reporting 62–80% 

accuracy in certain tasks such as temporary object classification on construction sites using few images 

per class [9] or façade defect classification [24]. Additionally, given that conventional deep learning 

models often require large and well-annotated datasets to surpass 64% accuracy in similar indoor 

settings [34], the results of this study underscore the effectiveness of PNs in delivering high performance 

with minimal data. 

 

Figure 4: Confusion matrixes of PNs over the three folds from left to right; Fold-1, Fold-2, and Fold-3 

 

Figure 5: Sample instances with possible influence on misclassifications 
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5. Conclusion and future work 

This study implemented a few-shot classification approach using PNs within a meta-metric learning 

framework to classify AECO-specific object classes in IBEs, where data scarcity and class imbalance 

present significant challenges. Three different folds of novel classes were evaluated using a 5-way 5-

shot configuration, with PNs achieving an average accuracy of 87.33%. This result demonstrates the 

model’s potential for accurate classification using limited labelled data, offering a practical alternative to 

traditional deep learning methods that heavily rely on large-scale annotated datasets. The observed 

variability in accuracy across folds highlights both the strengths of the model in recognizing distinctive 

object classes and the need for improvement in handling visually ambiguous or visually similar 

instances. Given these findings, the proposed system is well-suited as a decision-support tool within 

broader construction management workflows. For tasks such as progress monitoring or quality controls, 

the model can automate object recognition and facilitate detection of discrepancies, thereby reducing 

manual effort and enabling timely decision-making. However, its direct application in safety-critical 

contexts, such as hazard identification or regulatory compliance, would require further enhancement, as 

such tasks demand extremely high accuracy with minimal tolerance for error. Enhancing the model’s 

feature extraction capabilities, through more advanced feature extractor CNNs are worth investigating 

to check the improvement in recognition accuracy for classes with lower performance. Additionally, PNs 

performance on increased number of support images per class, though not as high as needed for 

classical DL-based models, could be investigated. While PNs was chosen as a metric-based FSL 

method for its computational efficiency, ease of training, and superior performance over other metric-

based approaches, investigating optimization-based and model-based alternatives may further enhance 

adaptability in AECO contexts. A broader evaluation of FSL strategies could yield deeper insights into 

their suitability for diverse IBE tasks. 
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