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Abstract 

High-load, repetitive construction tasks pose significant risks for the development of musculoskeletal 

disorders (MSDs), which adversely affect workers' health, productivity, and quality of life, making 

accurate risk quantification crucial for timely prevention. In recent years, computer vision (CV) has 

demonstrated significant potential in assessing MSD risks by offering an automated, contactless, and 

adaptable monitoring approach in complex environments. Existing approaches that rely on traditional 

biomechanical frameworks (e.g., REBA)—which assess MSD risks based on individual static frames by 

averaging the results—fail to capture the nonlinearly accumulating nature of MSDs risks in continuous 

motion and overlook individual variability in dynamic indicators such as amplitude, frequency, and 

smoothness. These limitations introduce bias, underscoring the need for an adaptive, personalized 

dynamic MSD risk scoring technique. To address these limitations, this study investigated the feasibility 

of a multi-model framework that integrates an enhanced Spatiotemporal Graph Convolutional Network 

(ST-GCN), a lightweight Transformer, and a diffusion model. It first employed an ST-GCN with dynamic 

adjacency and adaptive hypergraphs to model short-term dependencies; next, a Transformer refined 

long-term motion patterns; and finally, a diffusion model generated personalized risk score distributions 

to track MSDs risk evolution. The framework was trained on the HMR 2.0 dataset and evaluated on both 

HMR2.0 and MoYo dataset. Joint information was extracted for comprehensive MSDs risk assessment, 

and the resulting risk scores were compared with those from traditional biomechanical static single-

frame methods. The results demonstrated that the proposed approach captured individual variability 

and nonlinearly accumulating MSDs risks more effectively, confirming the superiority of the proposed 

dynamic MSDs risk assessment. The findings underscore the significant potential of the proposed model 

for video-based MSDs risk assessment to enhance the accuracy of automated, real-time MSDs risk 

monitoring in high-load and dynamic environments such as construction sites. 
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1. Introduction 

Musculoskeletal disorders (MSDs) are among the most prevalent occupational health problems in 

construction, particularly affecting the back, neck, and upper limbs [1][2]. Construction workers 

experience a markedly higher risk of MSDs than workers in most other industries, largely because of 

prolonged heavy labor, irregular load handling, and frequent awkward postures. Economically, MSDs 

drive up medical expenditures and compensation claims, causing project delays and aggravating 

workforce shortages. Therefore, systematically assessing MSD risks is essential for designing targeted 

interventions that support effective prevention and management [3]. 

Traditionally, MSD risk has been assessed with checklist-based ergonomic risk assessment (ERA) tools. 

Classic examples—including the Rapid Upper Limb Assessment (RULA) [4] and Rapid Entire Body 

Assessment (REBA) [5]—assign risk scores from visual inspections of static postures (e.g., arm and 

trunk angles) without interrupting the workflow [6]. Although these methods can be applied quickly, they 

are labour-intensive, subjective, and susceptible to inter-rater variation. Moreover, they do not scale to 

continuous monitoring, which limits their usefulness in modern, dynamic workplaces [7]. 



 

 

Recent computer-vision approaches automate ERA by extracting 2D/3D human poses from individual 

RGB frames and then computing ergonomic indices (e.g., RULA, REBA) from the resulting joint angles 

[8]. These methods either (i) calculate the scores directly [9], or (ii) use convolutional neural networks 

trained on labelled posture data to regress risk [10]. Although they reduce manual effort and permit 

simultaneous monitoring of multiple workers, their frame-level perspective ignores temporal posture 

dynamics and can underestimate the cumulative MSD risk that accrues over time [11]. 

To mitigate the limitations of frame-level analysis, recent AI-based ERA research integrates temporal 

modeling into skeletal data streams. Graph Convolutional Networks (GCNs), recurrent architectures 

such as Long Short-Term Memory (LSTM) networks, and Transformer models capture inter-joint 

dependencies over time and yield more accurate risk estimates [12]. Nonetheless, two challenges 

remain in construction environments. First, these models generally assume well-defined, repetitive tasks, 

whereas on-site construction work is fluid and context-rich; skeletal data alone may therefore overlook 

critical environmental cues. Second, they rarely personalize risk estimates to worker-specific attributes 

such as body composition or physical fitness, even though individuals performing identical tasks can 

face markedly different risk levels. 

To address these gaps, this study investigates the feasibility of a multi-model AI pipeline for dynamic 

MSD-risk assessment. The pipeline adopts a two-stream architecture. The skeleton stream extracts 3D 

joint sequences from monocular video, refines them with spatiotemporal graph-neural-network 

modelling, and augments them with rule-based ergonomic cues. In parallel, the video stream captures 

scene context through a Vision Transformer and encodes worker-specific attributes. The two streams 

are fused via cross-modal attention, and the resulting joint representation is passed to a diffusion-based 

head that outputs a full probability distribution of MSD risk. By unifying spatial skeletal cues, temporal 

motion history, visual context, and personal factors, the framework simultaneously addresses task 

complexity, risk accumulation, and individual variability in a single end-to-end system. 

2. Methods 

2.1. Pipeline Overview 

In dynamic construction environments, ERA must handle articulated postures, evolving visual contexts, 

and inter-individual variability. To meet these demands, we propose a multimodal AI pipeline that ingests 

monocular RGB video and produces a calibrated probability distribution of MSD risk. The video is 

processed in parallel by two complementary streams—one focused on skeletal kinematics and the other 

on visual context—whose features are subsequently fused to yield a holistic risk estimate ( 

Figure 1). 

The Skeleton Stream first employs SKEL-HSMR [13] to regress 3D joint coordinates for every frame. 

These coordinates are fed into a temporal Channel-wise Topology-Refinement GCN (CTR-GCN) [14], 

enhanced with dynamic graph and hypergraph convolutions to model high-order spatiotemporal 

dependencies. In parallel, a rule-based branch extracts interpretable ergonomic metrics, including 

REBA scores, joint-excursion angles, and L5/S1 lumbar-load estimates [15]. The Video Stream applies 

a Video Swin Transformer [16] to the same frames and concatenates the resulting scene features with 

a fixed personal-attribute embedding that captures worker-specific susceptibility. A cross-modal 

attention fusion branch then aligns the two feature sets, producing a unified latent representation that 

integrates skeletal dynamics, visual context, and personal factors. Finally, a conditional denoising 

diffusion probabilistic model (DDPM) [17] leverages this fused representation to sample a calibrated 

probability distribution over MSD-risk levels. This architecture delivers dynamic, personalised ERA while 

preserving interpretability through its rule-based branch and explicit uncertainty quantification. 

Figure 1. Overview of the proposed multimodal pipeline. 



 

 

2.2. Skeleton Stream 

2.2.1. 3D Pose Estimation Branch 

Because downstream ergonomic metrics rely on accurate joint kinematics, we first reconstruct 

biomechanically plausible 3D skeletons from monocular video with SKEL-HSMR. The model couples a 

Vision Transformer (ViT) encoder with a lightweight decoder that regresses 3D joint coordinates directly. 

Unlike conventional SMPL pipelines, where every joint is treated as an unconstrained three-degree-of-

freedom (3-DoF) rotation, often yielding non-physiological poses [18], SKEL-HSMR embeds hard-coded 

anatomical DoF and joint-limit priors (e.g., the knee hinge is restricted to 0°–135°).  

During inference, the ViT encoder produces visual tokens that the decoder maps to three parameter 

sets: (i) a 46-dimensional pose vector 𝜃, (ii) a body shape vector S, and (iii) a global camera pose 

parameter 𝑝𝑚 . A differentiable forward-kinematics layer then converts these parameters into fully 

articulated 3-D joint positions for each frame [19]. By construction, the resulting skeletons satisfy 

biomechanical constraints, eliminating post-processing and providing reliable input for the subsequent 

GNN, rule-based, and vision branches. An overview of the complete architecture appears in Figure 2. 

Figure 2. Architecture of the SKEL‑HSMR‑based 3D pose‑estimation branch. 

2.2.2. Skeleton Graph Neural Network Branch 

Capturing fine-grained joint interactions over time is critical for ERA, so our skeleton branch (Figure 3) 

builds on the CTR-GCN. For each video clip, we obtain a 3D joint sequence of (T×J×3), reshape it to 

(C×T×V) and feed it to a two-stream encoder that processes joint coordinates together with bone vectors 

(differences between adjacent joints), thereby fusing absolute motion with relative-limb dynamics [20]. 

CTR-GCN first learns a coarse global adjacency prior and then refines it on a per-channel basis, 

providing far greater flexibility than fixed-topology GCNs. 

To capture higher-order and time-varying dependency, we insert hypergraph-convolution layers [21][22] 

that link groups of joints via hyperedges, allowing the network to model the complex synergies involved 

in motions such as bending. In parallel, DGNN blocks [23] update adjacency weights frame by frame, 

so the graph continuously reflects changing joint relevance—offering finer-grained adaptation than 

earlier semantic GCN schemes [24]. After these spatiotemporal layers, global pooling produces a 

compact skeleton embedding that concentrates key risk cues (e.g., lumbar loading). This embedding 

can be fused with other modalities or fed directly to the prediction head. By integrating two-stream inputs, 

channel-wise topology refinement, hypergraph reasoning, and DGNN-driven dynamics, the skeleton 

branch provides sensitive, comprehensive detection of high-risk postures and movements. 

 

Figure 3. Architecture of the skeleton GNN branch. 



 

 

2.2.3. Rule-Based Branch 

Purely data-driven models often lack interpretability—a crucial prerequisite for real-world deployment. 

To bridge this gap, we integrate a rule-based feature module that applies expert-defined ergonomic 

rules to every frame, injecting official safety standards directly into the pipeline. The module produces 

transparent metrics that map cleanly onto established guidelines, thereby strengthening user trust [25]. 

A primary function of this module is the automatic generation of REBA scores. Following the CREBAS 

protocol [26], it discretizes trunk, neck, and limb angles extracted from the 3-D skeleton, adds twist- and 

load-related penalties, and merges the corresponding lookup tables to produce a deterministic risk rating 

that matches expert assessment. It simultaneously reports the underlying joint angles—trunk flexion, 

shoulder abduction, elbow/knee flexion, and neck inclination—allowing practitioners to reference values 

routinely used in ergonomic checklists [27]. To capture load effects that posture alone cannot, a 

simplified biomechanical model estimates L5/S1 compressive force from anthropometrics, trunk flexion, 

and external load mass. Despite its quasi-static formulation, this estimate agrees within 90% of full 

motion-capture analyses. Together, the REBA score and compressive-force metric ground the 

assessment in established rules while quantifying both positional and load-bearing risk. 

Rule-based features are computed for every frame, optionally aggregated across the entire task, and 

concatenated with the deep-learning embeddings before the final classifier. This hybrid input grounds 

the predictions in established ergonomic standards and makes high-risk outputs more transparent (e.g., 

linking excessive trunk flexion to an elevated REBA score). Recent studies show that combining 

deterministic metrics with learned representations enhances both accuracy and interpretability, making 

it easier for safety practitioners to understand and trust the system [28]. 

2.3. Vision Stream 

Skeleton sequences describe joint motion but miss visual appearance and context—lighting, workspace 

layout—that also shape ergonomic risk. To fill this gap, we add a parallel Video Vision Transformer (ViT) 

branch that extracts spatiotemporal and contextual cues directly from RGB frames [29] (Figure 4). The 

raw video stream reveals subtle muscle tremors, object-handling patterns, and environmental hazards 

such as uneven flooring, providing safety signals unavailable to the posture-only branch. 

We use the Video Swin Transformer as the backbone. Its shifting 3D window–attention mechanism 

restricts computation to local regions and gradually enlarges the receptive field across successive layers, 

achieving a favorable speed–accuracy trade-off. Pre-trained Kinetics weights are fine-tuned on our 

dataset, enabling the model to learn both motion cues—such as velocity and acceleration—and 

contextual features, including tools and obstacles, directly from the raw frames. 

Ergonomic risk varies widely among individuals, and attributes such as body-mass index (BMI) have 

been shown to affect injury likelihood markedly [30]. To capture this variability, we insert a learnable 

attribute token to encode worker metadata (height, weight, BMI) at the start of the video-patch sequence. 

Processed alongside the patches, this token allows the self-attention mechanism to fuse personal and 

visual cues; as a result, the ViT branch can, for example, assign greater importance to subtle joint 

deviations in a worker with a high BMI. 

The last Video Swin layer outputs a pooled vector that integrates motion, appearance, environmental 

cues, and the personal information carried by the attribute token. We concatenate this vector with the 

skeleton-GNN features and the rule-based metrics and pass the fused representation to the fusion-and-

diffusion branch for risk prediction. By combining scene context with subject-specific data, the model 

delivers more robust and personalised estimates than skeleton cues alone. 

 

Figure 4. Architecture of the Video Swin Transformer branch. 



 

 

2.4. Multimodal Fusion and Diffusion 

After the skeleton, video, and rule-based streams extract their complementary cues, the resulting feature 

tensors are concatenated and passed to a cross-modal Transformer that performs bidirectional attention 

across modalities. Skeletal queries attend to visual and rule tokens, allowing composite patterns—such 

as an awkward arm posture aligned with an abnormal joint-angle reading and an elevated REBA score—

to emerge within a shared latent space. The resulting embedding unifies motion dynamics, scene 

context, and ergonomic indices into a single, holistic representation of musculoskeletal risk. This 

multimodal embedding is then fed to a DDPM, which iteratively drives latent noise toward the learned 

risk manifold and outputs a calibrated probability distribution over risk levels. The distribution’s mean 

serves as a point estimate, while its variance quantifies predictive uncertainty—crucial in safety-critical 

settings where even low-probability, high-impact events demand attention. Working in tandem, the 

cross-modal Transformer and DDPM convert heterogeneous cues into a principled, uncertainty-aware 

assessment that links data-driven insights to established ergonomic standards. 

3. Training Implementation 

3.1. Training Overview 

To minimize manual labelling while still capturing the full complexity of ergonomic risk, we adopt a three-

phase curriculum that progressively enriches supervision using publicly available 3D pose resources. 

Phase 1 pre-trains the two geometry-centred backbones—a Vision Transformer (ViT) that lifts single 

RGB frames to SKEL-HSMR parameters, and a spatiotemporal skeleton GNN—on the large, diverse 

HMR 2.0 corpus [31] specifically its four largest subsets: Human3.6M [32], MPI-INF 3DHP, COCO, and 

MPII. Phase 2 freezes those weights and learns a compact 16-dimensional latent code that fuses the 

pretrained features with rule-based ergonomic cues, remaining kinematically faithful while aligning with 

REBA scores. Phase 3 attaches a conditional DDPM that converts each frame-level latent into a 

calibrated probability distribution over risk outcomes, thereby modelling predictive uncertainty. Training 

relies solely on public data—HMR 2.0 for supervision—and evaluation is conducted on held-out 

Human3.6M and MOYO [33] test sets. 

3.2. Phase 1: Pretraining Pose Estimation and Skeleton GNN 

We train a Vision-Transformer-based 3D pose module that regresses a full human model from a single 

RGB image. The ViT encodes the image and outputs the parametric skeleton q (joint rotations) and 

shape 𝛽  We minimize a composite loss ℒpose  (1) consisting of: A 2D reprojection loss ℒ2𝐷 (2) that 

penalizing differences between projected 3D joints Π(𝐽𝑗)  and ground-truth 2D key points 𝑢𝑗 ; A 3D 

parameter loss ℒ3𝐷(3) that matches the pseudo ground-truth pose 𝑞∗ and shape 𝛽∗; and A Regularizer 

ℒreg (4) enforces joint-angle limits and bone-length consistency for physical plausibility. 

ℒ𝑝𝑜𝑠𝑒 = ℒ2𝐷 + 𝜆3𝐷ℒ3𝐷 + 𝜆regℒreg (1) 

ℒ2𝐷 = ∑  

𝑗

∥ Π(𝐽𝑗) − 𝑢𝑗 ∥
2 (2) 

ℒ3𝐷 =∥ 𝑞 − 𝑞∗ ∥2 +∥ 𝛽 − 𝛽∗ ∥2 (3) 

ℒreg = 𝜆lim∑ 

𝑖

[max⁡(0, 𝜃𝑖 − 𝜃𝑖
max)2 +max⁡(0, 𝜃𝑖

min − 𝜃𝑖)
2
] + 𝜆bone ∑  

(𝑖,𝑗)∈ℰ

(∥ J𝑖 − J𝑗 ∥2− ℓ𝑖𝑗)
2
 (4) 

To further improve accuracy, we employ an iterative refinement scheme. At the end of each epoch a 

lightweight inverse-kinematics (IK) solver updates the pseudo-ground-truth pose 𝑞∗ so that the projected 

joints align more closely with the 2D key-points. The refined pair (𝑞∗, 𝛽∗) is then passed through forward 

kinematics, 𝐽𝑗 = FK (𝑞∗, 𝛽∗) and these joints supervise the next epoch. 

In parallel a spatio-temporal CTR-GCN is pre-trained on the same sequences. Its objective combines 

three terms: In parallel we pre-train a spatio-temporal CTR-GCN on the same poses. Its training 

objective combines three terms: a reconstruction loss ℒAE (5) that forces the network to reproduce the 

input joints; a one-step prediction loss ℒpred (6) that encourages temporal-dynamics modelling; and a 

smooth loss ℒsmooth (7) that penalises large joint velocities. 

ℒAE = ∑  

𝑗

∥ 𝐽𝑗 − 𝐽𝑗 ∥
2 (5) 

ℒpred = ∑  

𝑗

∥ 𝐽𝑗(𝑡 + 1) − 𝐽𝑗(𝑡 + 1) ∥2 (6) 



 

 

ℒsmooth = ∑  

𝑗

∥ Ĵ𝑗
𝑡+1 − Ĵ𝑗

𝑡 ∥2 (7) 

The total loss ℒGNN (8) is comprised of these three terms. Because the GNN is trained on joints that are 

continuously refined by IK, its latent features encode both accurate kinematic structure and short-term 

dynamics—assets that later strengthen the multimodal ergonomic-risk fusion. 

ℒGNN = ℒAE + 𝜆predℒpred + 𝜆smoothℒsmooth. (8) 

3.3. Phase 2: Fusion Training for Interpretable Risk Representation 

Phase 2 learns a 16-D, single-frame risk embedding by fusing three frozen feature streams: visual 

tokens 𝑣𝑡 from the ViT’s penultimate layer, kinematic features 𝑔𝑡 from the skeleton GNN, and heuristic 

scores 𝑟𝑡 from the rule-based module. The concatenated vector is fed through a two-layer perceptron to 

yield the latent code 𝑧𝑡 (9). The fusion network is trained end-to-end with the composite loss ℒ𝑓𝑢𝑠𝑖𝑜𝑛 (10), 

which balances four terms: a pose-reconstruction loss ℒpose−rec (11) decodes 𝑧𝑡⁡ back to 3D joint angles 

and penalises deviations from the original pose, anchoring the latent to valid human kinematics; a 

risk-alignment loss ℒ𝑟𝑖𝑠𝑘 (12) maps 𝑧𝑡 to a predicted score 𝑦̂𝑡 and penalises its discrepancy from the 

reference ergonomic metric (e.g., REBA), thereby distilling expert heuristics into the embedding; a 

temporal-smoothness loss 𝑇𝑠  (13) discourages abrupt changes between consecutive embeddings, 

reflecting the ergonomic principle that micro-adjustments—not jerks—reduce musculoskeletal load; and 

a Accumulation loss ℒ𝑎𝑐𝑐𝑢𝑚 (14) raises the target risk whenever a posture persists: if a pose lasts T 

frames, a duration-dependent increment Δ𝑇 is added to the reference score, encoding the well-known 

fatigue effect of sustained static postures. 

𝑧𝑡 = FC2 (ReLU(FC1([𝑣𝑡; 𝑔𝑡; 𝑟𝑡]))) (9) 

ℒ𝑓𝑢𝑠𝑖𝑜𝑛 = 𝜆𝑝𝑜𝑠𝑒ℒ𝑝𝑜𝑠𝑒−rec + 𝜆𝑟𝑖𝑠𝑘ℒ𝑟𝑖𝑠𝑘 + 𝜆𝑎𝑐𝑐𝑢𝑚ℒ𝑎𝑐𝑐𝑢𝑚 (10) 

ℒpose−rec = ∑  

𝑗

∥ 𝐽𝑗 − 𝐽𝑗 ∥
2 (11) 

ℒ𝑟𝑖𝑠𝑘 =⁡∥ 𝑦̂𝑡 − 𝑦𝑡
𝑅𝐸𝐵𝐴 ∥2 (12) 

𝑇𝑠 = ∥ 𝑧𝑡+1 − 𝑧𝑡 ∥
2 (13) 

ℒ𝑎𝑐𝑐𝑢𝑚 =∥ 𝑦̂𝑡+𝑇 − (𝑦𝑡
𝑅𝐸𝐵𝐴 + Δ𝑇) ∥

2 (14) 

Together, Equations (9) – (14) ensure that 𝑧𝑡 preserves precise kinematics, aligns with conventional 

REBA scoring, remains temporally coherent, and explicitly captures risk accumulation over time. 

3.4. Phase 3: Diffusion-Based Probabilistic Risk Prediction 

To capture the variability inherent in ergonomic risk, we append a conditional Denoising Diffusion 

Probabilistic Model (DDPM) to the fused embedding 𝑧𝑡. Rather than outputting a single value, the DDPM 

learns a full conditional distribution 𝑝(𝑦𝑡 ∣ 𝑧𝑡) over possible risk outcomes 𝑦𝑡  (e.g., injury risk levels), 

thereby reflecting differences in individual tolerance, environment, and task context. 

The diffusion head is a U-Net conditioned on 𝑧𝑡. During training we corrupt an initial risk label 𝑦0 with 

Gaussian noise over T=100 steps, using a linear schedule 𝛽1, … , 𝛽𝑇 from 10−4 to 0.02. At each iteration, 

we sample t from {1, … , 𝑇}, add noise to obtain 𝑦𝑡, and train the network conditional U − Net𝜖𝜙(𝑦𝑡 , 𝑡 ∣ 𝑧𝑡) 
to predict the added noise 𝜀 . The objective is the standard DDPM loss (15), which minimises the 

mean-squared error between the true and predicted noise. 

ℒ𝑑𝑖𝑓𝑓 = 𝔼𝑦0,𝜖,𝑡[∥ 𝜖 − 𝜖𝜙(𝑦𝑡 , 𝑡 ∣ 𝑧𝑡) ∥
2] (15) 

After convergence, reverse diffusion yields multiple samples 𝑦̂0 from 𝑝(𝑦0 ∣ 𝑧𝑡), providing a calibrated 

risk distribution. For instance, an awkward posture embedding may return a high probability of “moderate 

risk” and a smaller tail of “extreme risk,” faithfully reflecting real-world uncertainty.  

4. Model Evaluation and Discussion 

Section 4 adopts a two-part, four-experiment evaluation protocol to highlight the strengths of the 

proposed framework. In subsection 4.1 we benchmark five low-complexity actions, showing that the 

predicted risk distributions align closely with conventional single-value REBA scores and therefore 

satisfy point-wise accuracy requirements. Subsection 4.2 comprises three targeted tests that (i) quantify 

the model’s ability to capture risk accumulation during prolonged tasks, (ii) examine its sensitivity to 



 

 

inter-subject variability, and (iii) assess its robustness to camera-view changes and partial occlusions in 

complex motions. Taken together, these experiments demonstrate the feasibility of the proposed model. 

4.1. Low complexity action risk evaluation 

Five repeatable, low-complexity actions from Human3.6M—Taking Photo, Sitting on Chair, Walking Dog, 

Walking, and Walking Together—were selected because they span the static-to-mildly-dynamic 

spectrum while avoiding severe occlusions and extreme viewing angles. From three held-out subjects 

we sampled 150 consecutive frames per action, yielding a clean evaluation set of 2 250 frames. Each 

frame was evaluated in three ways: (i) the deterministic REBA score computed with CREBAS; (ii) the 

single-value estimate produced by the MTL-ERA-S baseline; and (iii) the full risk distribution generated 

by the proposed model, whose mean (μ) serves as the point estimate and whose standard deviation (σ) 

is retained for later analysis. Because Human3.6M contains no ergonomic annotations, we built a 

pseudo–ground-truth risk curve by running a conventional pipeline—3-D joint extraction followed by 

automatic REBA scoring—on every frame and smoothing the result with a Savitzky–Golay filter [34]. 

Figure 5 overlays this reference curve (red) on the three predicted densities. For every action the blue 

mode aligns with the red peak, indicating an unbiased centre, while the blue confidence band widens 

from 5 units for Sitting on Chair to 8 units for Walking Dog, showing that the model’s uncertainty 

increases with range of motion. Figure 6 pools reliability diagrams across the five actions: predicted 

means are binned into ten equal-frequency intervals and compared with empirical frequencies. The blue 

curves trace the diagonal closely, confirming that the distributional predictions are well calibrated. 

 

Figure 5. Risk Score Density Overlay across Five Simple Actions. 

 

Figure 6. Reliability Calibration across Five Simple Actions. 



 

 

4.2. Targeted tests 

4.2.1. Temporal Modeling of Risk Accumulation 

We extend the frame-level analysis to cumulative exposure. Each source clip is looped until its total 

duration reflects task intensity; the resulting clip lengths are listed in Figure 7. The visual content remains 

unchanged—only the exposure time increases. At every frame t we compute three cumulative measures 

from the clip start to frame t: (i) the running-mean REBA score produced by CREBAS, (ii) the running-

mean estimate of the MTL-ERA-S baseline, and (iii) the risk distribution yielded by the proposed model. 

Figure 7 shows that the predicted mean risk μ continues to rise in all tasks, whereas both baselines 

plateau after the first few seconds. For Sitting on Chair, CREBAS and MTL-ERA-S stabilise near 4.3–

4.5 risk units, but our μ exceeds 5 and its standard deviation σ widens, indicating growing uncertainty 

as trunk flexion persists. In Walking Dog, successive gait cycles drive μ from 6.5 to 8.8, confirming that 

the model integrates load over time. Vertical dashed lines mark clip boundaries; the continuity of μ 

across these lines demonstrates that the network tracks cumulative exposure rather than clip position. 

Hence, the proposed distributional metric captures long-term musculoskeletal stress and provides 

calibrated uncertainty, whereas the two running-mean baselines quickly lose sensitivity. 

 

Figure 7. Temporal Risk Accumulation – Five Actions. 

4.2.2. Personalized Distribution Test 

Seven unseen Human3.6 M subjects—S1, S5, S6, S7, S8, S9, and S11—each contributed two 6 s clips: 

a quasi-static Sitting-on-Chair posture and a cyclic Walking gait. Figure 8 (Sitting) and Figure 9 (Walking) 

plot, actor by actor, the predicted risk distributions (blue), their means μ (blue dots), and the two 

baselines—CREBAS (orange triangles) and MTL-ERA-S (green squares). In the static task the baseline 

estimates cluster within a narrow 0.4-unit band around REBA 5, whereas our predicted means already 

range from 4.9 to 6.3 and the distribution widths differ markedly. The divergence widens in the dynamic 

task: μ spans almost 2.5 units and σ nearly doubles, yet both baselines remain confined to a much 

tighter corridor. Because the network receives only 3D joint coordinates, the dispersion of blue means 

must arise from subtle, actor-specific kinematic signatures. The model therefore preserves REBA-level 

point accuracy while automatically tailoring both mean risk and uncertainty to everyone—a concrete 

step toward personalised ergonomic-risk assessment. 



 

 

 

Figure 8. Personalization Risk Difference (Static) 

 

Figure 9. Personalization Risk Difference (Dynamic) 

4.2.3. Complex Motions and Viewpoint Variation 

A highly articulated yoga sequence from the MoYo benchmark was chosen because it stresses every 

major joint while holding a constant posture. The benchmark provides eight predefined viewing 

conditions (C1–C8) that systematically vary camera angle, blur, occlusion, and illumination; thus, the 

biomechanical load is fixed while only the visual signal changes. 

Figure 10 summarises the results for each condition. Our model’s mean risk μ (blue) fluctuates by fewer 

than 2.5 risk-score units across all views, confirming that it recognises the posture as essentially 

unchanged. By contrast, CREBAS (orange) and MTL-ERA-S (green) vary far more—dropping below 4 

in C3 and exceeding 12 in C6—revealing their sensitivity to purely visual artefacts. The light-blue 

uncertainty band remains narrow when the baselines agree (e.g., C1, C5) and widens only where they 

diverge, most notably in C6, where occlusion and glare impair 3D reconstruction. Because no camera 

metadata are available, this widening must arise from the network’s internal assessment of pose 

ambiguity. In practice, then, the proposed model converts poor imagery into broader risk distributions, 

whereas the point-estimate baselines oscillate between “safe” and “near-maximum” for the same 

biomechanical state. Such behaviour is critical in real deployments: the system delivers stable mean 

risk levels while exposing its confidence through an adaptive σ, enabling downstream decisions to 

consider both risk magnitude and visual certainty. 



 

 

 

Figure 10. Complex Motion with Viewpoint Variation. 

5. Conclusion 

This study confirms the feasibility of an integrated, multimodal pipeline for dynamic MSD risk 

assessment that fuses biomechanically constrained 3-D pose estimation, automated REBA scoring, 

topology-refining CTR-GCN skeleton features, context-aware Video Swin Transformer vision cues, and 

a diffusion-based probabilistic risk head. Across low-complexity Human3.6 M actions the predicted risk 

distributions remain centred on single-value REBA scores while adaptively widening with increasing 

range of motion, evidencing accurate uncertainty quantification; during extended exposures the 

cumulative mean risk continues to rise, capturing musculoskeletal load that historic-mean baselines 

miss; under eight visually degraded MoYo conditions the framework holds a tight, centred mean yet 

modulates distribution spread to reflect pose ambiguity, whereas baseline scores oscillate widely; and 

in tests with seven unseen subjects the model both preserves REBA-level point accuracy and 

discriminates individual risk means while scaling σ to each performer, demonstrating automatic 

personalisation. Collectively these findings confirmed the feasibility of the proposed model of 

overcoming long-standing limitations of existing AI ergonomic tools—namely the neglect of temporal 

load accumulation, personalization, and large visual biases—while delivering confidence-aware, real-

time risk monitoring suited to safety-critical environments such as construction sites. Future work will (i) 

extend the framework to multi-worker construction scenes, (ii) incorporate image-quality priors and 

additional sensor modalities to sharpen uncertainty estimates, and (iii) apply model-compression and 

edge-acceleration techniques to achieve real-time performance on wearable or AR-enabled devices. 
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