
CCC 2025 Proceedings of the Creative Construction Conference (2025)  
Edited by: Miroslaw J. Skibniewski & Miklós Hajdu & Žiga Turk  

https://doi.org/10.22260/CCC2025/0061 

 

Corresponding author email address: pl452@cam.ac.uk 

LLM-DRIVEN HUMAN-ROBOT INTERACTION WITH DIGITAL TWINS 
FOR FACILITY MANAGEMENT  

Peihang Luo1, Samuel A. Prieto2, Erika Parn1, Borja García de Soto2, 

Ioannis Brilakis1 
1 University of Cambridge, Cambridge, United Kingdom 

2 S.M.A.R.T. Construction Research Group, Division of Engineering, New York University Abu Dhabi 

(NYUAD), United Arab Emirates (UAE) 

 

Abstract 

This paper presents a framework for integrating user interaction, building digital twins, and robotic 

automation to enhance facility management. The system leverages a Large Language Model (LLM) as 

the central interface, enabling the user to intuitively retrieve data from the digital twin and command the 

robotic agents for facility inspection and monitoring tasks. Commands from the user are processed by 

the LLM, which translates them into actionable tasks. These tasks are then interpreted by the robotics 

middleware and executed autonomously by robots equipped with navigation and data acquisition 

capabilities. The collected data is then presented to human operators, who can use it to update the 

digital twin and inform maintenance decisions. By combining the natural language processing power of 

LLMs with digital twin-based data and robotic automation, the proposed framework reduces manual 

effort while streamlining facility inspections and supporting maintenance decision-making in facility 

management. A theoretical case study demonstrates the system's capabilities, illustrating its ability to 

process user queries, allocate robotic tasks, collect and deliver inspection data, and support informed 

decision-making. This approach bridges the gap between human decision-making, digital 

representations, and physical site operations, offering a user-friendly solution for modern facility 

management. 
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1. Introduction 

Effective facility management relies heavily on routine inspection of building assets to ensure safety, 

functionality, and compliance. As buildings become increasingly complex, the demand for efficient, 

accurate, and timely inspection methods has grown. Manual inspection methods are time-consuming, 

labor-intensive, and prone to inconsistency. At the same time, maintaining the accuracy and timeliness 

of digital twins, which are virtual representations of physical assets, requires a continuous flow of 

updated, ground-truth information from the physical assets. This creates a growing need for more 

efficient, scalable, and intelligent approaches to facility inspection and digital twin alignment. 

While robotic systems have the potential to automate physical facility inspection tasks, their operation 

often requires technical expertise and training, limiting their accessibility for non-technical users such as 

facility managers and building operators [1]. There is a lack of intuitive, user-friendly interfaces that allow 

non-technical users to control robotic systems in an intuitive way. 

Recent advances in Large Language Models (LLMs) provide an opportunity to simplify this interaction. 

LLMs can offer a natural language interface that interprets and translates unstructured, high-level user 

commands into structured task plans for robotic execution [2]. When integrated with building digital twins 

and robotic systems, LLMs can help non-technical users command robots to perform inspection tasks 

using high-level natural language. 



 

 

In this paper, we propose a framework that enables users to initiate facility inspection tasks through 

natural language commands, which are processed by an LLM in conjunction with a building digital twin. 

The LLM interprets the prompt, retrieves relevant spatial and semantic context, and generates structured 

instructions for robotic execution. After the inspection is completed, the results are returned to the user, 

who then approves the update for the digital twin record, with all changes logged for traceability. We 

demonstrate this approach through a theoretical case study of a single-story building, demonstrating the 

system’s ability to support non-technical user interaction, automate inspection, and maintain digital twin 

timeliness and alignment. 

2. Literature review 

2.1. Digital twin-based robotic inspection 

Ground robots have emerged as a practical solution for routine inspection and maintenance in buildings, 

driven by the need to reduce labor, improve safety, and maintain up-to-date digital records of facility 

condition. A recent systematic review of 269 publications by Halder et al. [3] shows that, after aerial 

systems, unmanned ground vehicles (UGVs) are the most frequently studied platform for built-

environment inspection. The review also highlights autonomous navigation, multi-sensor data capture, 

and integration with BIM (Building Information Modeling) or digital twins (DTs) as dominant research 

themes. These findings establish a broad research agenda: coupling mobile robots with rich building 

information to close the feedback loop between physical assets and their virtual representations.  

Early demonstrations of that coupling adopt a digital-twin-enabled teaming paradigm. Lu et al. [4] 

develop a bi-directional DT that streams real-time robot telemetry to facility managers while allowing 

operators to dispatch a mobile robot for patrolling, cleaning, and inspection. They manage to report 

faster anomaly detection and improved situational awareness compared with manual workflows. 

Baniqued et al. [5] extend the concept to multi-robot fleets in high-risk nuclear facilities, presenting an 

immersive DT that fuses building geometry, live sensor data, and mission plans in both desktop and 

virtual-reality interfaces. Operators can therefore monitor and re-task robots without entering hazardous 

zones. These studies underline the value of DTs as a shared information space that mediates human 

oversight and robotic autonomy.  

Whereas DTs offer global context, knowledge-driven task reasoning ensures that the robot can act 

locally. Chen et al. [6] introduce the iSTA (integrated Scene-Task-Agent) model, which formalizes 

inspection know-how stored in a BIM and fuses it with human knowledge to plan robot missions such 

as fire-door and lighting checks. By querying the BIM for component semantics (location, type, 

inspection frequency) the robot generates waypoints and camera poses autonomously, reducing 

manual task programming. Follini et al. [7] also leverage BIM to pre-compute collision-free paths and 

embed inspection results back into the model, demonstrating how static design data can bootstrap robot 

deployment during both construction and O&M (Operations and Maintenance) phases.  

Advances in on-board perception further increase robot utility. Ge and Sadhu [8] equip a UGV with 

LiDAR (Light Detection and Ranging) and monocular vision and apply deep learning to localize and 

classify cracks and spalling. The detected defects are automatically mapped onto a 3D point cloud to 

create an annotated digital twin for structural health monitoring. Such systems demonstrate that mobile 

robots can produce high-value semantic data (i.e., imagery, geometry and defects metadata) needed 

by facility managers.  

Collectively, current research proves that ground robots, enriched by BIM and DT information, can 

autonomously collect facility data and feed it back to digital records. However, task requests still rely on 

predefined schedules, rule-based action planners, or direct teleoperation. None of the surveyed work 

offers a natural-language interface that recognizes information gaps in the DT, reformulates user intent 

into robotic tasks, and returns structured results to close the loop automatically. Addressing this gap, 

our framework introduces an LLM as a cognitive broker between the user, the digital twin, and the robot. 

By building on the technical foundations outlined above, the proposed LLM-driven architecture aims to 

deliver truly on-demand inspections and data updates for modern facility management. 



 

 

2.2. LLM-based human-robot interaction and task planning 

Recent advances in LLMs have enabled new possibilities for intuitive human-robot interaction by 

enabling users to issue high-level commands in natural language. Unlike traditional interfaces that rely 

on graphical user interfaces (GUIs), predefined commands or structured inputs, LLMs can interpret 

flexible and high-level prompts provided by the users and translate them into actionable steps that can 

be directly executed by robots. In the context of robotic systems, this capability supports the generation 

of task plans that can be executed autonomously, bridging the gap between human intent and robotic 

action. This section reviews recent work at the intersection of LLMs, natural language interfaces, and 

task planning for robotic applications. 

Recent work has explored the integration of LLMs into robotic systems to support more natural, flexible, 

and efficient human-robot collaboration. Gkournelos et al. [9] propose an LLM-based manufacturing 

execution system that enables seamless communication between human operators and industrial 

robots in smart assembly tasks. This system combines a natural language interface, real-time data 

integration through digital twins, and behavior-based robotic control, significantly improving collaboration 

efficiency in real-world use cases. Similarly, LLMs have been applied to streamline robot programming 

and task execution, reducing reliance on rigid command structures by enabling free-form natural 

language instructions [10]. In addition, Prieto and García de Soto [11] developed a dual-LLM agent 

framework for robotic task allocation in construction. By combining a generator and a supervisor agent, 

the system is able to produce more accurate, constraint-aware task schedules. These studies 

demonstrate the growing potential of LLMs to bridge human intent and robotic action, especially in 

contexts where adaptability and ease of instruction are critical. 

Beyond human-robot interaction, recent work has explored how LLMs can support robotic task planning 

in complex, real-world environments. Luo et al. apply a hierarchical code generation framework using 

LLMs to automate the control of construction assembly robots, integrating high- and low-level logic with 

domain-specific APIs to improve program reliability and flexibility across diverse tasks [12]. Prieto and 

García de Soto propose a multi-agent LLM architecture for task planning and allocation in construction 

robotics, where separate Planner and Supervisor agents collaborate to generate and validate 

instructions, improving execution accuracy and reducing hallucinations in dynamic environments [13]. 

In addition, the ELLMER (embodied large-language-model-enabled robot) framework integrates LLMs 

with sensorimotor feedback to enable robots to execute long-horizon tasks in unpredictable settings, 

combining retrieval-augmented generation and real-time contextual adaptation [14]. These works 

highlight the emerging role of LLMs in bridging high-level reasoning and low-level robotic control, offering 

solutions for robust and adaptable task planning. 

Overall, the integration of LLMs into human-robot interaction and task planning presents a promising 

direction for enabling more flexible, intelligent, and user-friendly robotic systems. Current research 

demonstrates the potential of LLMs to interpret user intent, generate executable plans, and adapt to 

complex and dynamic environments. However, applying these models in the context of building digital 

twins introduces challenges related to the model’s ability to understand the building’s spatial layouts and 

semantic information, which requires effective integration with structured digital representations. 

Additionally, mechanisms are required for maintaining humans in the loop to validate and trace data 

updates. LLMs, in particular, have the potential to empower users to direct robotic agents in facility 

inspection and monitoring tasks, supporting the continuous alignment between physical conditions and 

their digital representations and helping to keep digital twins accurate and up to date. 

3. Methodology and Implementation 

This work presents a methodology that leverages LLMs to facilitate human-robot interaction for indoor 

facility inspection and monitoring tasks. These tasks typically involve identifying and evaluating physical 

elements such as HVAC (Heating, Ventilation, and Air Conditioning) units, electrical panels, fire 

extinguishers, and doors to support facility management activities like safety checks and condition 

assessments. The intended users are facility or building managers, who often lack operational 

knowledge of robotic systems. By enabling interaction through natural language commands, the system 

reduces the complexity of directing robotic agents and interpreting inspection outcomes. 



 

 

An overview of the system methodology is shown in Figure 1. The architecture integrates a natural 

language interface powered by an LLM, a robotic middleware layer, and a robotic agent. Users initiate 

the process by submitting natural language prompts describing inspection needs. The system interprets 

these prompts to extract context, translates them into structured instructions, and communicates the 

tasks to the robotic agent via the middleware. The robot performs the required operations, such as 

navigation and data collection, and the collected data is then returned to the user for validation. Based 

on user input, updates are made to the digital twin of the facility, with all changes logged to support 

transparency and traceability. 

To demonstrate the application of this approach, a single-story building was used as a testbed, focusing 

on facility elements such as furnishings, fire safety equipment, HVAC systems, and electrical 

infrastructure. When a user prompt is received (e.g., “Retrieve information about the fire extinguisher in 

the hallway”), the LLM interprets the task intent and retrieves relevant spatial and semantic metadata 

from the building’s IFC (Industry Foundation Classes) model. If the required data is available and up to 

date, it is retrieved and displayed to the user. If not, the system initiates a data collection process by 

generating a structured instruction in JSON format, which is later parsed by the robotic middleware and 

autonomously executed by the robot. 

 

Fig. 1. Overview of the system methodology, showing the sequential flow from user interaction to 

robotic execution and digital twin update. 

For new data collection, the LLM generates a structured instruction set specifying the inspection task, 

including the target object, its location (x, y, yaw), and required sub-tasks such as navigation and image 

capture. A representative output in JSON (JavaScript Object Notation) format may look like this: 

{ 

  "task": "inspection", 

  "target_object": "<target object name>", 

  "location": {"x": <X coordinate>, "y": <Y coordinate>, "yaw": <YAW orientation>}, 

  "sub_tasks": ["navigate", "capture_image"] 

} 

This structured output is parsed by the ROS (Robot Operating System) middleware, which translates 

high-level instructions into commands for the robot's control system. The robotic agent executes the 

assigned operations and transmits the results to the system interface for user review. Upon validation, 

the data is used to update the digital twin. All updates are logged with metadata, such as timestamps, 

user identity, and affected components, to maintain a complete and auditable record of all changes. 



 

 

4. Results and Discussion 

To validate the proposed framework, we conducted a case study using a single-story residential building 

modeled in IFC format. The building contained common spaces including a bedroom, living room, 

kitchen, and bathroom, as shown in Figure 2. The inspection task focused on verifying the presence and 

condition of a fire extinguisher located in the hallway. 

 

Fig. 2. Floor plan of the building. 

A natural language prompt, “Please inspect the fire extinguisher in the hallway,” was issued to the 

system. The LLM processed this input, identifying the task type (inspection), the target object (fire 

extinguisher), and the spatial context (hallway). By querying the IFC model, the system retrieved the 

relevant spatial layout and object metadata to generate a structured instruction set for robotic execution. 

The structured instruction generated was as follows: 

{ 

  "task": "inspection", 

  "target_object": "Fire_Safety-Nystrom-ABC_Fire_Extinguisher:EX-3002", 

  "location": {"x": 3.538, "y": -1.848, "yaw": -0.820}, 

  "sub_tasks": ["navigate", "capture_image"] 

} 

This instruction was passed to the robotic middleware, which parsed the input and translated it into 

executable commands. The robot then autonomously navigated to the hallway using the coordinates 

provided in the instructions, and captured an image at the given yaw orientation as shown in Figure 3. 
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Fig. 3. Inspection result, (a) Image taken by the robot and (b) location of the robot with respect to the 

fire extinguisher when taking the picture. 



 

 

The inspection result, which is a photograph of the fire extinguisher (as shown in Figure 3a), will be 

returned to the user. After reviewing the captured data, the user will then validate it and update the 

digital twin record, confirming the fire extinguisher’s presence and adding a timestamped log entry linked 

to the inspection task. 

This case study demonstrates the feasibility of using LLMs to bridge user intent and robotic execution 

in facility inspection tasks. It highlights the system’s ability to retrieve spatial context from digital models, 

generate interpretable instructions, and support human-in-the-loop digital twin updates. While the task 

was relatively simple, the workflow illustrates key strengths of the approach: reducing user effort, 

simplifying robot operation, and supporting continuous digital twin alignment. 

5. Conclusion 

This paper presented a framework that utilizes an LLM to enable natural language interaction with 

robotic agents for facility inspection tasks, supported by a building digital twin. Through a case study of 

a facility inspection task in a single-story building, we demonstrated the feasibility of translating user 

prompts into structured robotic instructions, executing autonomous inspection tasks, and enabling 

human-in-the-loop digital twin updates. 

The results highlight the potential of LLM-based interfaces to make robotic inspection systems more 

accessible and user-friendly, particularly for non-technical facility managers. By integrating semantic 

and spatial information from digital building models, the framework supports context-aware task planning 

and simplifies the process of maintaining up-to-date digital twin records. 

Future research will explore expanding the system’s capabilities to support more complex inspection 

workflows, multi-object task planning, anomaly detection during inspection, and more dynamic update 

mechanisms between physical environments and their digital counterparts. Further investigation is also 

needed to enhance the reliability, safety, and interpretability of LLM-driven robotic operations in real-

world facility management scenarios. 
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