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ABSTRACT 

The purpose of construction management is to successfully accomplish projects, which requires a continuous monitoring 

and control procedure. To dynamically predict project success, this research proposes an Evolutionary Support Vector 

Machine Inference Model (ESIM). ESIM is developed based on a hybrid approach that fuses support vector machine 

(SVM) and fast messy genetic algorithm (fmGA). SVM is primarily concerned with learning and curve fitting; and fmGA 

with optimization. Furthermore, the model integrates the process of continuous assessment of project performance (CAPP) 

to dynamically select factors that influence project success. CAPP was developed to identify continuous variables that have 

the ability for predicting project outcome. Training and test patterns are collected from CAPP database that contains 46 

construction projects. These projects are real data collected by Russell from the 16 representative Construction Industry 

Institute (CII) member companies. K-means clustering was employed to conduct an unsupervised clustering to extract 

similar cases for comparison. Results show that ESIM can successfully predict the project success. 
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1. INSTRUCTIONS 

In the construction industry, construction project 

success infers that certain expectations of partici-

pants, including owners, planners, designers, archi-

tects, contractors, and operators, are fulfilled. Once a 

construction project has been bid, the prime contract 

is typically subdivided into multiple subcontracts. 

Large numbers of participants are, therefore, in-

volved in the project planning and implementation 

phases. Expectations can only be met by conducting 

a comprehensive analysis of participants [1]. The 

measurements of project success in the construction 

industry are cost, schedule, performance, and safety. 

Hughes [2] developed a Construction Project Suc-

cess Survey instrument to identify important success 

metrics before the start of a project, and to evaluate 

the level of success achieved at project completion. 

The measuring metrics include objective (such as 
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cost, schedule, performance, and safety) and subjec-

tive considerations. Griffith [3] developed an objec-

tive metrics that comprised of four variables: budget 

achievement, schedule achievement, design capac-

ity, and plant utilization. The authors discovered that 

despite the complexities involved in measuring pro-

ject success, a measurement can be developed based 

on objective project performance.  

The construction industry is replete with myriad 

uncertainties that make management exceedingly 

complex. Factors for success, therefore, vary from 

project to project. Although human experts can often 

achieve a satisfactory project outcome, shortfalls 

nearly always occur due to managers failing to take 

all relevant factors into consideration and lacking 

access to all relevant information. 

Various scientific and engineering fields have been 

paying increasing attention in recent years to fusing 

different artificial intelligence (AI) paradigms. A 

number of studies have demonstrated that perform-

ances achieved by fusing different AI techniques are 

better than those achieved by employing a single 

conventional technique [4]. Two tools, the fast 

messy genetic algorithms (fmGA) and support vec-

tor machine (SVM) have been successfully applied 

to solve various problems in construction manage-

ment. Considering the characteristics and merits of 

each, this paper combines the two to propose an 

Evolutionary Support Vector Machine Inference 

Model (ESIM). In the ESIM, the SVM is primarily 

employed to address learning and curve fitting, 

while fmGA addresses optimization. This model was 

developed to achieve the fittest C and gamma pa-

rameters with minimal prediction error. 

An appreciation of critical factors is crucial to assess 

the requirements of project success and to achieve 

successfully project objectives. Statistical methods 

represent a basic approach to identify significant 

factors from historical data or questionnaire results. 

However, the dynamic nature of critical factors 

means that changes in project conditions must be 

monitored continuously. The Construction Industry 

Institute [5] cooperated with the University of Wis-

consin at Madison to develop a prediction software 

tool, named Continuous Assessment of Project Per-

formance (CAPP) [6], which allows managers to 

identify significant factors continuously and dy-

namically. 

In this study, CAPP software is employed to deter-

mine significant factors for project success and AI 

approaches are used to assess project success. Pro-

ject managers can use the model to predict the de-

gree of success of a new project, allowing managers 

to enhance their effective control over projects and 

prevent problems. The remaining sections of this 

paper include Section 2: a introduction of AI ap-

proaches which comprehend K-mean clustering and 

Evolutionary Support Vector Machine Inference 

Model with fmGA, and SVM involved; Section 3: 

significant factors for project success are determined 

using CAPP software and AI approaches apply to 

project success prediction; Section 4: conclusions 

are described. 

2. ARTIFICIAL INTELLIGENCE  

APPROACHES 

2.1. K-means Clustering  

Many algorithms are able to identify specific do-

mains. K-means clustering is a simple and fast ap-

proach to data clustering that starts with k centroids 

(seeds), which are usually generated randomly. Each 

data set (sample) is assigned to the cluster with 

closer centroid of the Euclidean distance measure-

ment. It is customary to set a threshold on iteration 

numbers to prevent excessive calculation times. 

After a number of iteration steps, every clustering 

feature can be determined. As desired number of 

clusters can be set as a limitation for target conver-

gence, perfect convergence cannot be guaranteed. K-

means usually converges in practical applications, 

especially in pattern recognition problems. K-means 

clustering is widely and commonly employed owing 

to its simplicity, although it does present some in-

herent drawbacks such as a fixed setting for the op-

timal solution or time consumption.  

2.2. Fast Messy Genetic Algorithms (fmGA) 

The fmGA, developed by Goldberg et al. [7], can 

find efficiently optimal solutions for large-scale 

permutation problems. The fmGA-based approach is 

known for its flexibility in allowing hybridization 

with other methodologies to obtain better solutions. 
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2.3. Support Vector Machines (SVM) 

The theory that underlies support vector machines 

represents a new statistical technique that has drawn 

much attention in recent years. This learning theory 

may be seen as an alternative training technique for 

polynomial, radial basis function and multi-layer 

percept classifiers. SVM are based on the structural 

risk minimization (SRM) induction principle, which 

aims to restrict the generalization error (rather than 

the mean square error) to certain defined bounds. In 

many applications, SVM have been shown to deliver 

higher performance than traditional learning ma-

chines and have been introduced as powerful tools to 

solve classification and regression problems. 

2.4. Evolutionary Support Vector Machine  

Inference Model (ESIM) 

Support vector machines and fast messy genetic 

algorithms represent recently developed AI para-

digms. SVM were first suggested by Vapnik [8] and 

have recently been applied to a range of problems 

that include pattern recognition, bioinformatics, and 

text categorization. An SVM classifies data with 

different class labels by determining a set of support 

vectors that are members of the set of training inputs 

that outline a hyper plane in a feature space. It pro-

vides a generic mechanism that fits the hyper plane 

surface to the training data using a kernel function. 

The user may select a kernel function (e.g. linear, 

polynomial, or sigmoid) for the SVM during the 

training process, which identifies support vectors 

along the function surface. Using SVM presents 

users with the problem of how to set optimal kernel 

parameters. Therefore, obtaining SVM parameters 

must occur simultaneously. Proper parameter set-

tings can improve SVM prediction accuracy, with 

parameters that should be optimized including pen-

alty parameter C and kernel function parameters 

such as the gamma of the radial basis function (RBF) 

kernel. In designing an SVM, one must choose a 

kernel function, set kernel parameters and determine 

a soft margin constant C (penalty parameter). The 

Grid algorithm is an alternative to finding the best C 

and gamma when using the RBF kernel function. 

However, this method is time consuming and does 

not perform well [9]. Fast messy genetic algorithms 

were developed by Goldberg et al. in 1993. Unlike 

the well-known simple genetic algorithm (sGA), 

which uses fixed length strings to represent possible 

solutions, fmGA applies messy chromosomes to 

form strings of various lengths. Its ability to identify 

efficiently optimal solutions for large-scale permuta-

tion problems gives fmGA the potential to generate 

SVM parameters C and gamma simultaneously. 

Considering the characteristics and merits of each, 

this paper combines the two to propose an Evolu-

tionary Support Vector Machine Inference Model 

(ESIM). In the ESIM, the SVM is primarily em-

ployed to address learning and curve fitting, while 

fmGA addresses optimization. This model was de-

veloped to achieve the fittest C and gamma parame-

ters with minimal prediction error. The structure of 

ESIM is shown in Fig. 1. 
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Figure 1. Structure of ESIM 

3. PROJECT SUCCESS PREDICTION MODEL 

Specific processes and methods used to implement 

ESIM are summarized in Fig. 2. Referring to Fig. 2, 

the blocks on the left hand side are the procedures 

used to implement the model. The blocks on the 

right hand side are detailed methods and attributes 

concerned with execution of the tasks on the left 

hand side. 
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Figure 2. Model application process 

3.1. Assign Project Completion Percentage 

Using CAPP software, 54 historical construction 

projects were collected from 17 CII member compa-

nies and analyzed using 76 variables. Current project 

progress and the level of significance of each factor 

should be identified first using CAPP software. Sig-

nificant factors vary during project stages. To iden-

tify factors, a completion percentage should be se-

lected for this analysis. For purposes of research in 

this paper, project progress is set at 67% complete. 

3.2. Identify significant factors 

A threshold level of significance should be selected 

to identify factors of greatest significance. CAPP 

recommends that an attached alpha below 0.1 identi-

fies a referenced factor. In this paper, a threshold for 

the alpha was set at less than 0.025 in order to re-

duce the number of identified factors. According to 

project performance, CAPP defined the four degrees 

for project success of “successful”, “on time or on 

budget”, “less-than-successful”, and “disastrous” 

[6]. Basing on this definition, this paper assigned 

four quantitative values for project success linearly 

(see Table 1). 

Table 1. Quantitative Project performance 

Project performance Value 

Successful 1.000 

On time or on budget 0.667 

Less-than-successful 0.333 

Disastrous 0.000 

Sequentially, CAPP can be employed to calculate 

significant factors. Factors can be analyzed using 

CAPP software (see Fig. 3). 

 

Figure 3. CAPP Graphics for Cost of Change Orders 

Histogram in CAPP Graphics shows level of signifi-

cance, denoting high effectiveness at low quantity. 

With project progress set at 67%, the value of histo-

gram is about 0.02 (below the threshold 0.025), indi-

cating that the factor “cost of change orders” is iden-

tified as a significant factor in this study. Eleven 

factors significant to project success were identified 

in total (see Table 2). 

Table 2. Time-dependent factors identified by CAPP 

Factors 
Column I.D. 

in CAPP 

Analyzed Sig-

nificant Level 

1. Actual design % complete C5_16 0.01 

2. Actual owner expenditures C3_10 0.01 

3. Invoiced construction costs C2_14 0.02 

4. Designer planned effort hours C2_13 0.01 

5. Actual invoices for material 

and equipment 
C3_28 0.01 

6. Paid construction costs C3_14 0.01 

7. Cost of owner project com-

mitments 
C2_24 0.01 

8. Recordable incident rate  

(by period) 
C2_38 0.01 

9. Cost of change orders C2_17 0.02 
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Factors 
Column I.D. 

in CAPP 

Analyzed Sig-

nificant Level 

10. Quantity of change orders C3_17 0.01 

11. Actual overtime work  C3_41 0.02 

3.3. Historical data collection 

Forty-six of the 54 valid projects in the CAPP data-

base met the criterion that all eleven factor values 

are non-null. Forty-two of the 46 were selected for 

training (see reference [6]), leaving four valid pro-

jects available for testing (see Fig. 4). 

 

Figure 4. Testing data from the CAPP database 

3.4. Project Clustering 

With CAPP’s kind permission, 56 projects in CAPP 

database were employed in this study. Forty-six 

projects fulfilled our criteria and were treated as raw 

data for project success learning. Of the 46 data sets, 

42 were treated as training data and 4 were assigned 

as testing data for ESIM learning. Model accuracy 

varies in correspondence with the dynamic factors of 

influence on project success. Testing RMSE was 

0.1781, respectively. Detailed training results are 

shown in Table 3. While result trends are positive, 

they are not categorized well to determine project 

success, identify Less-than-successful projects (pro-

ject performance=0.333), or determine on-time or 

on-budget (project performance=0.667) projects. 

Additional strategies should be employed to over-

come such deficiencies. 

Table 3. Results for Project Success Assessment without 

Prepared Data Clustering 

Testing 
Case 

Predicted Output Desired Output 
Training 
RMSE 

1 0.0978 0.0000 

2 1.0527 1.0000 

3 0.6347 0.3330 

4 0.8199 0.6670 

0.1781 

K-means clustering is a multi-variable analysis data 

clustering method that aggregates similar data and 

identifies discrepancies between clustered categories. 

CAPP database data used in this study were gathered 

from different construction companies and vary in 

terms of project attributes (e.g., type of construction, 

cost, procurement approaches, etc.) To improve 

assessment accuracy, K-means clustering was used 

prior to ESIM learning to collate training data sets 

that were most similar to the assessment target. 

SPSS, a commercial statistics software package, was 

the tool used to conduct K-means clustering analysis 

for this purpose. After the number of clusters been 

set, each cluster center iterated toward the fittest 

location by Euclidean distance measurement. The 

number of clusters was chosen as 2 to represent 

positive and negative quality. The four testing data 

(CS1, CS2, CS3, and CS4) were treated as clustering 

targets respectively. For CS2, K-means clustering 

was employed for the 42 training data and CS2. The 

clustering results are shown in Table 4, in which the 

CS2 is attached to cluster 2, where there are 17 data 

sets in this cluster. Similarly, there are 25 training 

cases for CS1, 26 for CS3, and 17 for CS4. In other 

words, for each new project assessment, K-means 

clustering was applied to the assembly of the 42 

training projects as well as the new one with 2 sets 

of clusters having been set. Thus, SPSS generated 2 

cluster centers. Finally, data sets in which the new 

project had been clustered were treated as training 

data (part of 42 training projects, without the new 

one) for sequential ESIM learning to assess new 

project performance. The reason for setting 2 sets of 

clusters was to avoid having only a small number of 

projects for ESIM learning. Therefore, if the data 

pool is large enough in other studies, the selected 

number of clusters could be increased. In summary, 

time-dependent factors were not the only factors that 
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changed dynamically with CAPP analysis. Training 

data sets also varied for different project perform-

ance assessment targets with K-means clustering. 

Table 4. Results of K-means Clustering 

Initial Cluster Centers Final Cluster Centers 

Cluster Cluster Variable 

1 2 1 2 

C5_16 1.000 0.000 0.087 0.122 

C3_10 0.000 1.000 0.088 0.472 

C2_14 0.021 0.327 0.055 0.379 

C2_13 0.233 0.000 0.102 0.090 

C3_28 0.021 0.675 0.028 0.292 

C3_14 0.027 0.419 0.077 0.171 

C2_24 0.000 0.847 0.026 0.283 

C2_38 0.864 0.000 0.077 0.033 

C2_17 0.145 0.000 0.068 0.180 

C3_17 0.000 0.000 0.104 0.161 

C3_41 0.021 0.000 0.100 0.028 

Notations: 

1. Convergence achieved due to no or minimal distance change. 
The maximum distance by which any center has changed is 0.000. 

The current iteration is 3. The minimum distance between initial 

centers is 2.053. 
2. There were 43 valid cases. Of which, 26 cases were in cluster 1 

and 17 cases were in cluster 2. No cases were missing.  

Table 5 Comparisons for K-means Clustering of Perform-

ance Assessment Results 

 
Testing 

Case 

Predicted 

Output 

Desired 

Output 

Training 

RMSE 

1 0.0978  0.0000  

2 1.0527  1.0000  

3 0.6347  0.3330  

Without  

K-means 

Clustering  

4 0.8199  0.6670  

0.1781   

1, CS1 0.0083  0.0000  

2, CS2 0.9932  1.0000  

3, CS3 0.3237  0.3330  

With  

K-means 
Clustering 

4, CS4 0.6678  0.6670  

0.0071 

3.5. Search for predictive solution 

After K-means clustering analysis, ESIM project 

performance learning for a particular case can follow 

sequentially. Results of RMSE are listed in Table 5,  

with results (not using prepared data clustering) 

shown in Table 3. Results show that K-means clus-

tering does indeed improve project performance 

assessment. Therefore the project success assess-

ment processes have been demonstrated as repre-

senting a reasonable, feasible, and effective ap-

proach. 

4. CONCLUSION 

This paper proposes a model for assessing project 

success using AI approaches that employ fast messy 

genetic algorithm, support vector machine, and K-

means clustering. The two commercial software 

packages used include CAPP for project access and 

SPSS for data clustering. The results achieved in this 

paper can be summarized as follows: 

1. Using CII’s copyrighted CAPP software, the time-

dependent factors that dynamically influence 

project performance can be managed in order to 

achieve precise project success assessment.  

2. Although data in the CAPP database are represen-

tative of typical construction projects, their fea-

tures vary widely. Extracting similar historical 

cases using K-means clustering can improve pre-

diction accuracy. This study performs clustering 

using SPSS software.  

3. The uncertain information and complex mapping 

in project performance assessment are conducted 

using ESIM. ESIM uses SVM to perform input-

output mapping and fmGA to achieve global op-

timization. As its feasibility for project perform-

ance assessment has been demonstrated, there-

fore ESIM is proposed herein.  

4. Project assessment helps managers to make strate-

gies in a time efficient manner and take correct 

actions to achieve final project success. With the 

proposed model, dynamic project performance 

assessment can be achieved using CAPP, SPSS, 

and ESIM. 
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