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Abstract  

Although digital technologies have enhanced structural designers' capabilities for optimal designs, 

reliance on manual workflows still poses obstacles in modeling, analysis, and optimization. This raises 

the question of feasibility for a combined framework, focusing on an adaptive, automated workflow to 

transform hand-sketched truss designs into optimized structural models in a Visual Programming (VP) 

environment while employing Building Information Modeling (BIM) tools. Thus, the research unfolds: (i) 

training a deep-learning model for feature extraction; (ii) developing a sketch application to connect 

Dynamo to any touchscreen device to streamline the draft generation process; (iii) converting optimized 

sketches from Dynamo to validated structural models in Robot Structural Analysis (RSA); (iv) validating 

the proposed method with a benchmark problem sourced from the open literature. Results of this unified 

Sketch-to-BIM workflow demonstrate valuable improvements in design accuracy, weight reduction, and 

structural performance, along with significant time savings as the entire cycle completes in 

approximately 13 minutes, reducing the duration of typical manual workflows by an order of magnitude.  
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1. Introduction 

The Architecture, Engineering, Construction, and Operations (AECO) industry is increasingly adopting 

digital solutions with Building Information Modeling (BIM) to enhance efficiency, accuracy, optimization, 

and positive environmental impact. Generative Deep-Learning (DL) models for automated design and 

visualization topics are becoming increasingly evident [1], yet these designs are usually limited to image 

form, and transforming them into conceptual and optimized digital engineering models is challenging 

[2], [3], [4]. In this context, the referenced study [5] aimed to convert architectural sketches into BIM 

models by employing a DL-based framework along with processes such as preprocessing, thinning, and 

line segmentation, to enhance client-architect communication. In [6], the authors attempted to convert 

2D structural sketches, such as beams and columns, into Finite-Element Analysis (FEA)  models to offer 

a sketch-based modelling alternative. This aimed to simplify and expedite the conversion of engineering 

sketches into FEA models while improving user interaction with simulation tools through a sketch-based 

interface rather than traditional, complex command-line or menu-driven interfaces. The scholars of [7] 

used YOLO-based object detection approaches to detect elements such as hand-drawn beam 

diagrams, loads, boundary conditions, and numerical values and perform analyses based on this data 

with limitations, such as recognizing only orthogonal loads, integer values without units, and uniformly 

distributed loads, along with constraints requiring sketches to be neatly drawn. For further details on this 

topic, readers can refer to the survey study [8], which examined multiple methodologies, explained 

sketch-based image retrieval topics, and outlined core challenges, such as ambiguity in sketch 

recognition and variations in sketch styles. Furthermore, the study details primary technologies and 

benchmark datasets crucial for evaluating various methods. The literature also emphasizes the growing 

importance of sustainability and the circular economy, since just buildings consume approximately 40% 

of the total energy generated globally, and structural optimization is one aspect of decreasing these 

values and serving sustainability purposes [1]. Moreover, Artificial Intelligence (AI) technologies have 



 

 

enabled more efficient utilization of optimization algorithms at reduced computational costs, making 

structural optimization more accessible and practical for the AECO sector [1]. AI-based metaheuristic 

algorithms (MAs), which are necessary in structural optimization because of the relationship between 

objective functions and decision variables, which often cannot be represented in closed form due to the 

complexity of the problem, effectively solve large-scale and complex problems [9], yet their practical 

implementation requires further research and integration with commercial software, as stated in [10], 

[11], [12]. The review article [13] underscores the potential of MAs to improve the AECO field while 

highlighting the need to bridge the gap between academic research and industry applications.  

Based on the literature review, a significant challenge and contribution lie in translating designers' 

sketches and imaginations into analyzable formats, a process whose importance is evidenced by 

benefits such as improved communication and the convenience of integrated Sketch-to-BIM (StB) 

workflows within a single interface, avoiding the need for separate analysis programs. Consequently, 

this study focuses on generating BIM models from images—even hand-sketched ones—by employing 

tools such as Dynamo and Robot Structural Analysis (RSA) in a structurally optimized format to provide 

a streamlined design and optimization framework that unlocks the full potential of designers. This opens 

doors for futuristic speech-to-structure approaches and provides a foundation for generative modeling 

and modification in the AECO field. Transforming hand-sketched models to optimized structural models 

is significantly faster than manual or parametric techniques and is easy to implement since it does not 

require programming, technical knowledge, or expertise. However, significant work remains for these 

digital technologies to develop practical, industry-ready solutions that can seamlessly integrate with 

existing workflows while addressing real-world constraints and requirements [1], [14], [15], [16]. The 

primary objective is to train a DL model to extract features from hand-sketched images. Subsequently, 

the overall workflow is enhanced by developing a sketching application for Dynamo that adaptively 

connects Dynamo to any tablet, phone, or Kindle, enabling users to create initial sketches. This 

application also includes a sketch refinement feature using the trained DL model, giving additional 

features such as adding, removing, scaling, and aligning elements, etc., to modify the refined line model. 

Furthermore, the system's adaptability is assessed, its performance is benchmarked against 

conventional workflows, and its efficiency in optimizing both size and shape variables is validated. The 

results indicate significant time savings, enhanced design exploration, and improved structural 

performance, making a strong case for the system’s practical application in the AECO industry. With the 

present study, the integration of optimization on the design gap is addressed, as the optimization step 

is considered a vital part of the design processes by the authors and addresses the mentioned practical 

aspects, with the provided combined workflow. The optimization process incorporates MAs with RSA to 

perform structural optimization, which involves optimizing member cross-sections for sizing, adjusting 

node positions for shaping, and combining these aspects for overall topology optimization, as described 

by [13]. There are a vast number of MAs in the open literature; major ones include Genetic Algorithms 

(GAs), which dominate due to their flexibility and being one of the first examples of MAs, together with 

Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) [13]. The decision on which MA 

to use depends on the designer, and since MAs employ trial-and-error methods, their success mostly 

depends on problem specifics and algorithm parameters [17]. The MA for the present research was 

selected based on the study, which states that DE is the most utilized and successful MA among 

scholars and its parameter-free approach saves valuable time for the designer by preventing manual 

effort on fine-tuning the parameters which have a high impact on the result [17], [18]. As an alternative 

to DE, GA, because of its deep roots, was employed along with an adaptive epsilon constraint handling 

technique to provide methodological variety even though identifying and employing the single best MA 

is beyond this study’s scope since the provided workflow allows users to select and easily switch the 

MA within Dynamo [11], [19]. As a final objective, the optimized model is generated automatically from 

a hand-drawn sketch in Dynamo and industry-standard commercial RSA software with the real-world 

section properties. For this, direct integration through Application Programming Interface (API), along 

with automated section selection for optimized models from standard profiles, was implemented with 

parametric handling of boundary conditions and loads. The scope of the study is limited to 2D truss 

structures. Implementing the definition of loads, supports, and forces with the sketched image, along 

with 3D structures, is a topic of future studies. The significance of this study lies in unifying image 



 

 

processing, structural analysis, and optimization into one streamlined workflow, addressing a critical gap 

in the AECO field. By integrating computer vision and ML into Revit-Dynamo, the proposed workflow 

automates the design process and introduces new, interactive optimization routines, which result in 

enhanced exploration of design alternatives for BIM. 

2. Methodology 

The methodology consists of the following steps: (i) generating a synthetic line intersection dataset using 

Python and computer vision techniques; (ii) training a YOLOv8 DL model for node detection; (iii) 

designing an application for Dynamo, which seamlessly transfers data between computer and 

touchscreen device, to provide initial sketches; (iv) employing the RSA API to demonstrate the 

adaptability of the provided workflow with BIM; (v) testing the methodology on a benchmark problem to 

provide detailed outcomes of the proposed methodology. 

 

Figure 1. An overall presentation of the methods described in the present study 

The initial step of the StB workflow is to generate an initial sketch, which was significantly enhanced by 

integrating an intuitive sketch-generation and refinement application developed for Dynamo that 

leveraged HTML and Python-based technologies. The HTML frontend (Figure 1b–c) provides a canvas 

for intuitive drawing, enabling users to create sketches directly via touchscreen devices or a computer. 

The web application employs WebSockets to maintain real-time communication with the Python 

backend, which was created with Python's Tkinter, allowing the reception and real-time visualization of 

sketches on both computer screens and touchscreen devices. The drawing app provides interactive 

functionality for sketch refinement using DL-based techniques. Upon receiving the refined model from 



 

 

the frontend, the application visualizes and provides tools for further editing, including drag-and-drop 

nodes, adding or removing elements or nodes, and alignment and repositioning functionalities. The 

integrated real-time scale feature ensures accurate dimensional representation of sketches, which was 

critical for subsequent stages. To extract features from 2D sketched images, a comprehensive synthetic 

dataset was generated, comprising 35,000 labeled synthetic images, and a YOLOv8 DL model, 

specifically utilizing the yolov8x variant known for its robust feature extraction capabilities, was trained 

on this synthetic dataset. This extensive dataset was created using a specialized Python script 

developed explicitly for this research. The script employed stochastic methods to simulate a diverse 

range of structural node intersections, including X-shaped, T-shaped, V-shaped, star-shaped 

intersections as well as significant imperfect intersections. These imperfect intersections intentionally 

introduced realistic anomalies, such as varying degrees of curvature, gaps, and misalignments, to better 

emulate practical conditions encountered in real-world sketches. Following dataset preparation, the 

training procedure was performed with hyperparameters such as the AdamW optimizer, image 

resolution of 416×416 pixels, and an enhanced selection of image augmentation methods including 

rotation, shear transformations, mosaic, and mix-up techniques. These augmentations were 

purposefully applied to enhance the model's ability to generalize and accurately detect structural nodes 

under various visual distortions and transformations. Moreover, the trained YOLOv8 model incorporated 

image-preprocessing steps such as grayscale conversion and normalization to standardize the input 

data, and can annotate detected nodes and elements to refine the model. Once refined, the digital 

sketch data was seamlessly transferred to Dynamo using custom nodes leveraging Dynamo's Python 

scripting capability, forming an analyzable structural model ready for optimization, which undergoes an 

optimization process using AI-based MAs, notably DE and GA. If the user-specified option shown in 

Figure 1a is active in Dynamo, by leveraging Python for .NET, the code dynamically loads the 

Interop.RobotOM.dll assembly to tap into Robot’s COM-based API. Given user inputs, it systematically 

builds a structural model by creating nodes and bars, assigning supports, applying loads, and defining 

essential material properties like Young’s modulus and density from Dynamo inputs on the optimized 

structural model obtained in the optimization module presented in Figure1a. The code also provided a 

section selection strategy for optimized cross-sections from real-world sections available in RSA, as 

shown in Figure1d. Finally, the script invokes Robot’s calculation engine to run an FEA on the optimized 

structure, provided results depicted in Figure1d, and saved the project at the designated file location. 

All code and scripts were provided in a GitHub account to increase the effectiveness of research and 

support reproducibility [20]. This integrated and adaptive methodology thus provided a streamlined and 

user-friendly framework, bridging conceptual hand sketches and optimized, validated structural models 

within the BIM environment, significantly advancing the capabilities of the AECO industry. 

3. Preliminary Results 

The results section provides a comprehensive overview of the analysis and optimization outcomes of 

the well-known 10-bar truss structure, which was employed by many scholars [10], [11], [12], [21], [22]. 

The structure was generated and optimized from a hand-sketched drawing using the proposed workflow 

presented in Figure 1 and then compared with the literature, with the results shared in Table 1 and 

Figure 2 which demonstrate notable findings, reflecting the effectiveness of the proposed technique and 

its adaptability. The structural configurations were sourced from the [21], and the problem was solved 

by considering only displacement constraints. The coordinates of nodes 3, 4, and 6 (Figure 1d) were 

chosen as design parameters; in those terms, this is a size and shape optimization problem with 13 

design variables. The execution time from start to end took approximately 800 seconds, including the 

drawing time, and the presented result in the Table 1 were obtained using DE.  

Table 1. 10-bar truss comparison results 

 [21] [22]  [23] This Study 

Objective (kg) 2549.2 2490.6 2302.4 1850.6 

Analysis Num. 400 10000 15100 4000 

Runs & Algorithm - & GA 24 & ACO 30 & PSOC 6 & DE, GA 



 

 

 

Figure 2. The optimization history along with the final result 

4. Conclusions and Discussion  

The present study focuses on enhancing the workflow from hand-drawn structural models to optimized 

digital models in a BIM environment. The results demonstrate the significance and success of the 

proposed sketch-to-BIM methodology using visual programming with Dynamo. In future studies, a hybrid 

node extraction method could be introduced as an alternative to the DL approach, allowing users to 

choose the method best suited to their needs. This could leverage the strengths of the presented 

approaches while mitigating their weaknesses. Alternatively, more advanced DL-based feature 

detection tools could be developed to identify forces, supports, and their types from sketches. The 

framework could also be expanded to generate building plans and benefit from more extensive error 

and bug detection, as well as a broader range of test examples, including frame structures. Overall, this 

method enhances the design and optimization process by combining both aspects and simplifying the 

use of advanced technologies compared to traditional approaches. The automated workflow offers 

advantages, such as time savings, increased accuracy, the ability to explore more design options, and 

seamless integration. However, limitations related to varying drawing styles among individuals, 

inconsistent image quality, and the handling of 3D structures are yet to be investigated. 
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