
 598

 

MONTE CARLO SIMULATION WITH EXACT ANALYSIS FOR 

STOCHASTIC PERT NETWORKS 

 

Zdzisław Milian 
Cracow University of Technology 

31-155 Kraków, ul. Warszawska 24 

milian@usk.pk.edu.pl 

 

ABSTRACT  

This paper deals with one of methods for estimating the probability distribution of the project completion time in stochastic 

PERT network. This method combines Monte Carlo simulation with exact analysis. The exact probability distribution for a 

subnet is used to improve an estimator of probability distribution for larger networks. In the paper computational results for 

different distributions of task duration are presented. More complicated then unimodal distributions are considered also. 

Both symbolic and simulation calculation were made with MatLab and own procedures. 
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1. INTRODUCTION  

Many planning problems can be represented by 

PERT networks. A graph in PERT networks 

composed of nodes and arcs is directed, acyclic and 

connected. In a PERT network for a project, an 

activity (task, job) can be represented by an arc, and 

an event by a node. The structure of the network 

represents the order in which these activities may be 

performed, and the project duration is simply the 

longest path through the network. In stochastic 

PERT networks, it is assumed that the random 

variables (RV) describing the task duration are 

associated with some or all the arcs. If the duration 

of each activity is assumed to have an associated 

probability distribution, then the problem of 

determining the project completion time (PCT) 

immediately presents itself. This ancient problem 

was formulated by Malcolm et al. who proposed a 

simple approximation method for evaluating the 

mean and the variance and using the Gaussian 

distribution as a distribution of the project duration 

(PERT method). The approximate methods were the 

subject of a great number of papers. They deal with 

various ways of estimating the cumulative density 

function (c.d.f.) of PCT in the networks and/or the 

moments of this distribution in order to avoid 

difficulties arising in the exact method. Monte Carlo 

simulation methods provides a powerful 

methodology to obtain desired statistics for any 

network with specified distribution of task durations. 

These methods have been discussed in literature 

[1,2,6,7]. However, the straightforward Monte Carlo 

method requires large amount of computational 

expense (see Table 1).  
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Table 1    

Type of estimation 
Size of 

sample 

The expected duration of PCT, it should be 

within σ/50 of the true mean, where σ is 

known and denotes standard deviation  

10 000 

The variance of a project duration, it should 

be correct within 5% 
3 000 

Probability within the limit of 0.01,  that a 

task will be lie on the critical path 
10 000 

The c.d.f. of PCT  (the greatest absolute 

difference between the estimation of c.d.f. 

and the true c.d.f. is less then 0.01) 

18 500 

In this paper we want to indicate an improved  

technique of simulation that uses analytical solutions 

concerning subnet to estimate the unknown c.d.f of 

lager networks (Control Variates technique). 

Although one can find many papers considering the 

PERT problems, there are few concerning the exact 

methods and giving analytical solutions.    

Since analytical solutions can be more available 

[4,5], we will show that the Control Variate (CV) 

technique can find wider applications, for not 

unimodal distributions also. First, we recall some 

information on the simplest simulation method that 

is used in PERT networks. 

“Straightforward” Sampling.  

By a realization  of a network we mean the network 

with a fixed value for each of its arc duration. This 

value is obtained through a random sample from all 

possible values from each arc following the c.d.f. of 

the arc duration. For a particular realization of 

network we apply the critical path algorithm to 

evaluate PCT. In this way we obtain a sample value 

of PCT. Next, by repeating this procedure to a long 

series of realizations, one may apply standard 

statistical methods to estimate the c.d.f. of PCT and 

/or its parameters of interest. 

It is clear that an amount of computing effort to 

obtain estimates depends on the size of samples. In 

Table 1 we present examples of the sample size [7].  

All sizes of sample in Table 1 were calculated to 

ensure the accuracy of estimation with probability 

0.95.  One can show that if 0.99 confidence is 

desired, size sample should be taken much higher. 

2. CONTROL VARIATES  

The basic idea underlying Control Variates (CV) 

technique is the generation of a twin RV that is 

positively correlated with the original RV. This new 

RV is called the control variate.  

Assume we wish to estimate some parameter θ  of 

the RV X, say )( Xg=θ  where the function g 

may be expectation , variance or probability. Let 

)(XΦ  denote the CV  and we can write the identity 

).()]()([ XXXg Φ+Φ−=θ  Since Φ  is positively 

correlated with g, it “mimics’ it in some fashion  and 

the difference,  )()( XXg Φ− , should be small. 

The latter term is estimated by Monte Carlo 

sampling with a great deal of precision. Thus θ  

can be estimated precisely because we assume 

)(XΦ  can be done analytically. To illustrate power 

of this technique consider the project depicted by 

network of Fig. 1a.  

 
Figure 1a. Original network 

 
Figure 1b. CV network 1 (subnet b) 
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First, we estimate the expected value of PCT for the 

original network. We take n realizations of 
i

aT  

(Fig. 1a) and 
i

bT  (Fig.1.b), using the same set of 

random numbers for each. To estimate E(Ta) we use 

the following estimator 

)E(T)T(T
1

b

i

b

n

1i

i

a

_

−−= ∑
=n

T  ,         (1) 

where )E(T
b

 is evaluated analytically. It is easy to 

show that the estimator  (1) is unbiased and often 

has a much smaller variance than does the 

straightforward estimate ∑
=

=
n

1i

i

a

_

T
1

n
T
a

. 

In a similar manner, we use the known c.d.f. of the 

CV. If )t(Fa

_

 and )t(Fb

_

 are empirical estimates of 

)(tF
a

 and )(tF
b , then an improved estimator 

would be 

)()()()(
___

tFtFtFtF
bba +−= ,          (2) 

were )t(Fb  is evaluated analytically. 

The success of the CV technique depends on how 

closely the CV, equals Tb, mimics the realization of 

RV=Ta in the given network. To choose the CV 

network properly we can use the concept of 

“criticality” [7]. In brief, the criticality of any task of a 

given network is the probability that it will be lie on the 

critical path. If an activity has a high criticality, it 

should be included in a control network. This 

suggestion will be examine in next section. 

3. VERIFICATION OF ESTIMATORS  

We consider the original network (Fig. 1a) and two 

CV networks (Fig. 1b and 1c). The tasks are 

distributed as follows: T1,T3,T5 – uniformly on the 

segment [0,1], T2,T4 – uniformly on the segment  

[0,2], and T6 is exponentially distributed with a 

parameter λ . Let f1(t), f2(t) and f3(t) denote the 

density functions of those distributions. They are 

illustrated in Fig. 2 and Fig. 3. 

  

Figure 2. Distribution of T1,T2,T3,T4 and T5 

 

Figure 3. Distribution of T6 

Under such assumptions the c.d.f. of PCT, Fb(t), 
related to the subnet b there is as follows   
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Figure 1c.  CV network 2 (subnet c) 
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and is illustrated in Fig. 4.  The probability density 

function (p.d.f.) of PCT, fb(t), is shown in this figure 

also. The distribution for the CV network 2 is, 

obviously, identical to the distribution of T6, so, 

).exp(1)( ttFc λ−−=  

 

Figure 4. The p.d.f and c.d.f. of  PCT  

The way of calculation (3) is presented in [4,5].  Let 

as notice that subnet b (called as a bridge) is an 

irreducible network (not a series-parallel network).  

In the case of series-parallel network calculations are 

much simpler. The special program for calculating 

analytically the c.d.f. of PCT for any PERT network 

was written.  

The statistical experiment was carried out to 

compare the quality of estimators based on the 

subnet b and subnet c. As mentioned earlier, the 

choice of the CV network has a great influence on 

the quality of estimators. To verify this problem, 

simulation was carried out for 
3

1
,3=λ  and 

2

1
, 

because it implies three cases: )()(
cb
TETE > , 

)()(
cb
TETE <  and )()(

cb
TETE ≈  respectively, 

since 9771.1)( =
b
TE  and λ= /1)(

c
TE . It should 

be intuitively clear that criticality is a function of 

activity time’s variance, as well as its mean. We can 

expect that if )()(
cb
TETE > then the criticality of 

tasks of subnet c is greater than for subnet b. The 

c.d.f.  )t(Fa  was approximated by four estimators 
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where: )t(ν  - denotes the number of realizations of 

Ta that do not exceed t, n – the number of reali-

zations, )t(Fb

_

 i )t(Fc

_

 calculated similarly to )t(Fa

_

 

for the subnets b and c. 

The size of samples n was 200. The calculation 

results are presented in Fig.5a-e. 

The quality of approximation is evaluated by the 

root mean squared error RMSE and  RMSE0.5 (the 

root mean squared error for Fa(t) > 0.5). Since 

))exp(1)(()()()( ttFtFtFtF bcba λ−−== ,    (5) 

we can calculate the error exactly. 

From comparison of graphs, RMSE and RMSE0.5 

follows that )t(Fa

_

 (straightforward simulation) is the 

worst estimator.  The estimators based on the CV 

networks are much better. It was observed that the 

best estimators are: )t(F 1a

_

 - if )()(
cb
TETE > , 

)t(F 2a

_

- if )()(
cb
TETE <  and )t(F 3a

_

 - if 

)()(
cb
TETE ≈ . 

3.  APPLICATION NOTES 

We want to point that the sample size was 200, this 

means 15 to 100 times decrease compared to Table 

1. However, we have to include a price has to be 

paid in the form of additional computing. This is 

because, analytical integration over more and more 

complicated regions is needed and the formulae 

became longer and longer as number of tasks 

increases. Referring to computational complexity it 

is shown [3],   that the problem of computing the 

c.d.f. of PCT within a given deadline is NP-hard 

even for discrete distributions of task durations, and 

simple series-parallel network structures. So it is 
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Figure 5e. . Comparison of )(),( 3

__

tFtF aa   and )(tF
a

, λ=0.5 

therefore unlikely that a polynomial time solution 

can be found with the more general functions. This 

remark refers to proper choice of the CV subnet 

rather than to the considered method. 

If the c.d.f. of PCT is more complicated then 

applications of the CV are more interesting. For 

example, if we assume that the random variable 

T1,T2,T4 and T5 in subnet 1b are distributed 

according to f3 presented in Fig. 6, and  T3 is 

distributed uniformly between 2 and 3 then the c.d.f 

of PCT for subnet 1a, Fig.7, is far a way from 

Normal distribution. 

From practical point of view such distribution 

should be examined also but in this paper there are 

no room for study such cases. More computational 

results concerning such cases will be presented 

during the conference. 

 
Figure 5c.  Graphs  1aaa F,F,F  for 3/1=λ  

            - ( aF  and 
1a

F  overlaps). 

Figure 5d. Graphs  2aaa F,F,F  for 3=λ  - 

( aF  i 2aF,  overlaps). 
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Figure 5a. Graphs  1aaa F,F,F  for 3=λ  

             - ( aF  and 
1a

F overlaps). 

 

Figure 5b. Graphs  2aaa F,F,F  for 3=λ  - 

( aF  and 
2a

F  overlaps). 
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4. CONCLUSIONS 

Since analytical solutions of PERT problems can be 

more available, one can suggest the control variate 

technique to improve Monte Carlo simulation for 

estimating the probability  distribution of the project 

duration, especially if high accuracy is required or  

distribution is not unimodal. This suggestion does 

not exclude other techniques which can be apply in 

combinations. 
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Figure 6. P.d.f. of a task duration 
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Figure 7. P.d.f. and c.d.f of  PCT 

 


