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ABSTRACT 

Information about the factors that lead to the deterioration of bridges is essential for bridge maintenance. Pinpointing what 

these factors are will certainly enhance the effectiveness of bridge management. However, a review of the literature reveals 

that such deterioration factors are usually determined from expert opinion. In other words, there is no systematic way to 

identify the factors and the effect they have on different types of bridge members. This study identifies six common types 

of deterioration that affect RC bridge decks. Twenty-nine factors are extracted from a review of past related work as well 

as from the inventory of Taiwan Bridge Management System. After this, a data mining technique, Rough Set Theory 

(RST), is employed to find the factors that have the greatest impact on deterioration from thousands of visual inspection, 

traffic and environmental data. It is found that weather-related factors are rather significant for almost all types of deterio-

ration. In addition to these, some functional and structural factors are major factors for cracking and traffic volume is a 

major factor in rebar corrosion and breakage.  
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1. INTRODUCTION  

According to the statistics collected by the Taiwan 

Bridge Management System (TBMS), nearly 50% of 

the bridges in this country are aged 20 years or more, 

making bridge management and maintenance be-

come increasingly important. The factors that have 

an impact on bridge deterioration provide essential 

information for bridge management and mainte-

nance. Pin-pointing these factors will most certainly 

help to enhance the effectiveness of bridge manage-

ment as well as to estimate their life cycle cost. For 

instance, bridges could be categorized for manage-

rial purposes according to their common deteriora-

tion factors. Information about the degree of deterio-

ration of bridges in the same category could be used 

by the bridge administration to prioritize the se-

quence of maintenance. Given budget limitations, a 

fair and reasonable maintenance policy could then 
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be proposed. The identification of deterioration fac-

tors could also help in the modelling of bridge dete-

rioration, which in turn improves forecasting. 

Deterioration factors can include many sources such 

as weather, traffic volume, nature of the design, 

quality of the construction, and so on. Most investi-

gative efforts so far have either focused on experi-

menting with some preselected factors, or factors 

suggested by experts. There have been a few studies 

where statistical methods have been applied to de-

termine deterioration factors from preselected ones 

but these however, have targeted only a few factors. 

Worries about missing important factors still remain. 

Reviews of past literature reveal a lack of a system-

atic way to identify factors for different types of 

bridge member deterioration. 

The technique of data mining has already been 

widely employed for factor identification in a variety 

of other fields. One of the advantages of data mining 

over the traditional statistical methods is the ability 

to find implicit information or characteristics from 

large amounts of accumulated data through system-

atic mathematical algorithms. In this study we apply 

Rough Set Theory (RST), one of the most common 

of the data mining techniques, to identify the factors 

that lead to deterioration of bridges. We first focus 

on some common types of RC bridge deck deteriora-

tion, such as cracking, spalling, efflorescence, etc. 

We select 29 factors from a review of past related 

work as well as the TBMS inventory. The relevant 

factors are then explored by applying RST to each 

deterioration group. 

2. LITERATURE REVIEW  

2.1. Research on Bridge Deterioration 

The deterioration factors for the whole bridge are 

usually taken into account. Scherer [1] established a 

Markov-chain decision model to diagnose the over-

all situation for bridge deterioration, in which road 

level, average annual rainfall, traffic volume, bridge 

material, number of spans, and bridge age were cho-

sen as factors. Zhao [2] proposed a fuzzy system for 

concrete bridge damage diagnosis while considering 

structural type, span length, number of lanes, num-

ber of spans, paving material, average annual rain-

fall, temperature variation, traffic volume and road 

level. Su [3] utilized logistic regression analysis to 

show how bridges deteriorated due to functional, 

structural and environmental factors. Chang [4] de-

veloped a model of bridge deterioration after con-

sulting the relevant literature and summarizing the 

factors that could cause deterioration such as, age, 

structural type, traffic volume, local soil profile, 

average annual rainfall, road level, and seismic zone. 

Huang [5] described the deterioration trend after 

screening bridge data, matching similar environ-

mental conditions such as whether the bridge was 

over water or not, distance from coastlines, average 

annual rainfall, soil profile and seismic zone, etc. 

There have been few studies focused on bridge 

components. Huang [6] did use an Analysis of 

Variation (ANOVA) technique to determine the 

factors that could have an influence on bridge dete-

rioration, such as the number of spans, area of the 

bridge deck, location, length of the bridge, average 

daily traffic volume, designed loading, and whether 

over water or not. Chen [7] proposed a model of the 

deterioration of the eight most commonly damaged 

bridge components. The major factors leading to 

deterioration of these bridge components were ob-

tained from the related literature as well as consulta-

tion with bridge experts. A summary of the factors 

from past studies can be found in Table 1. These 

efforts lead us to the following conclusions: 

Most studies have targeted factors affecting the 

whole bridge rather than its component parts.  

Consulting the literature and expert opinion have 

been the major sources when seeking factors. 

Different types of deterioration have not yet been 

taken into account. 

Factors discussed vary from study to study, so work 

covering most factors is very rare. 

Undoubtedly, it would be more sensible to study 

how factors affect bridge components rather than 

treating the bridge as a whole, and grouping the 

deterioration types will give us a more accurate un-

derstanding of bridge deterioration. In addition, 

some factors can be less than obvious, so may be 

overlooked if a systematic examination is not carried 

out. In this study, we demonstrate an effective and 
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efficient approach to explore the factors leading to 

the deterioration of RC bridge decks. 

2.2. Application of Data Mining 

Data mining is a powerful new technology with 

great potential to extract hidden predictive informa-

tion from large databases [8]. Data mining tools 

have already been widely applied to pattern recogni-

tion or data classification as well as to help with 

predicting future trends or behaviours. 

 

Table 1. Summary of Studies on Bridge Deterioration [1–7] 

Targets Whole Bridges Components 

Factors       Studies 
Scherer 
(1994) 

Zhao 
(2002) 

Su 
(2003) 

Chang 
(2004) 

Huang 
(2005) 

Huang 
(2003) 

Chen 
(2005) 

Bridge Age �  � �   � 

No. of Spans � �    �  

No. of Lanes  � �    � 

Length of Bridge  � �   � � 

Area of Deck      � � F
u
n
ct
io
n
al
 

Max. Span  � �     

Structural Type  � � �   � 

Girder Type   �    � 

Girder Material  �       

Abutment   �     

Pavement  � �     

Earthquake Bracing   �     

Expansion Joint       � 

Wing wall   �     

S
tr
u
ct
u
ra
l 

Designed Live Load      � � 

T
ra
ff
ic
 

Traffic Volume � �  �  � � 

Over Water or Not?   �  � �  

Distance from Coast   �  �  � 

Acid Rain       � 

Avg. Yearly Rainfall � �  � �   

Avg. Rainy Days per Year       � 

Soil Profile    � � �  E
n
v
ir
o
n
m
en
ta
l 

Temperature Variation  �      

Road Level � �  �    

M
is
c.
 

Seismic Zone    � �   

 

With today’s highly efficient mathematical algo-

rithms, and computer software, we can scour large 

databases for hidden patterns, finding predictive 

information that lies outside the experts’ expecta-

tions. That is, data mining can find answers to ques-

tions, which traditional statistical tools will take too 

long to reach, especially when working from large 

databases. Many computer software tools have been 

developed for solving such problems. We now men-

tion some successful applications: Wu [9] applied K-

means clustering and a decision tree to identify the 

characteristics of drivers with high accident rates, in 

an effort to help insurers screen customers; Lin [10] 

utilized RST to determine the factors leading to the 

deterioration of highway pavement; Liu [11] built a 

disease classification model for abdominal diseases 

by using RST to take out redundant attributes. One 

can see that this new technology matured enough to 

be widely applied in a variety of fields. 
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3.  METHODOLOGY  

3.1. K-Means Clustering 

K-means Clustering, first proposed by MacQueen 

[12], is one of the simplest unsupervised learning 

algorithms. The main idea is to classify a given data 

set into a certain number of clusters. This is useful 

for pre-processing when the volume of data is large 

and discrete. First, k centroids are defined, one for 

each cluster, preferably placed as far away from 

each other as possible. Next, each data point is as-

signed to a given data set associated with the nearest 

centroid. To do this, the Euclidean distance d(Xi,Cj) 

between each data point and the centroid is first 

calculated 

( )
21
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 where n is the dimension of the data. 

The first run is completed and an initial clustering is 

obtained when there is no data point left pending 

assignment. Next, new centroids are recalculated 

based on the clusters resulting from the previous 

step. New clustering is done by repeating the steps 

mentioned above. The process continues until the 

centroids no longer move. Finally, we use this algo-

rithm to minimize the objective function: 

∑ ∑
= ∈

−=
k

i Sx
i

i

cxE
1

2
,  (2) 

where Si and ci are the data set and the centroid of 

cluster i, respectively. Generally speaking, the algo-

rithm includes the following steps: 

Assign K points to the space represented by the data 

set being clustered. 

Assign each data point to the group with the closest 

centroid. 

Recalculate the positions of the K centroids. 

Repeat Steps 2 and 3 until the centroids no longer 

move. 

The procedure is shown in Figure 1 

 

Figure 1. Procedure for K-Means Clustering 

3.2. Rough Set Theory  

Rough Set Theory, one of most popular data mining 

tools, was first proposed by Pawlak [8] as a new 

mathematical tool for dealing with vague informa-

tion. The basic concept on which RST functions is 

the notion of an approximation space, which is an 

ordered pair S=(U,R), where U is a non-empty and 

finite set of objects, called a universe; R is the 

equivalence relation on U, called the indiscernibility 

relation. Each equivalence class induced by R is 

called an elementary set in S. A definable set in S is 

any finite union of elementary sets in S. For each X ⊆ U, X can be characterized in S on relation R by a 
pair of sets, its lower and upper approximations in S, 

defined as 

Rlow(X) = {x ∈ U | [x]R ⊆ X},  (3) 

Rupp(X) = {x ∈ U | [x]R ∩ X ≠ ∅},  (4) 

where [x]R denotes the equivalence class of R con-

taining x. A rough set in S is the family of all subsets 

of U having the same lower and upper approxima-

tions. 

Likewise, an information system (attribute-value 

system) is a pair I=(U,A) where U is a non-empty, 

finite set of objects and A is a non-empty, finite set 

of attributes on U, such that fa:U→Va for every 

attribute a∈A. Va is the set of values that a may 
take. In the Rough Set framework data are repre-

sented in the form of an information table. Each row 

of the table represents an object and every column 

represents an attribute that can be measured for each 

object. In other words, the information table simply 

assigns a value in Va to each attribute a of each ob-

ject in U.  With any B ⊆ A, there will be sets of 
objects that are indiscernible based on those attrib-
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utes. These indistinguishable sets of objects define 

an equivalence relation, called the B-Indiscernibility 

relation, defined as follows: 

IND(B)= {(x,x´)∈ U2
 | ∀a ∈ B, fa(x) =fa(x´)}.  (5) 

Similarly, the target set B(X) can be approximated 

using only the information contained within B by 

pegging the lower and upper approximations of set X 

Blow(X) = {x ∈ U | [x]IND(B) ⊆ X},  (6) 

Bupp(X) = {x ∈ U | [x]IND(B) ∩ X ≠ ∅}. (7) 

The resultant boundary region is given by the set 

difference Bupp(X) - Blow(X), which consists of those 

objects that can neither be ruled in nor ruled out as 

members of the target set X. The concept of lower 

and upper approximations is illustrated in Figure 2. 

 

Figure 2. Approximations of Set X 

In general, the upper and lower approximations are 

not equal. In such cases, set X is undefinable or 

roughly definable on attribute set B. When the upper 

and lower approximations are equal (i.e., the bound-

ary is empty), then set X is definable on attribute set 

B. 

If there is an attribute set C ⊆ B, which by itself can 
fully characterize the information system based on 

attribute set B, such an attribute set C is called a 

reduct. Formally, a reduct C is a subset of attributes 

B such that [13]: [x]C = [x]B  ; 

Attribute set C is minimal in the sense that  [x](C-a) 

≠ [x]B for any attribute a∈C. 
In other words, no attribute can be removed from a 

reduct without changing the equivalence classes [x]B. 

The reduct of an information system may not be 

unique. There may be many subsets of attributes B 

which hold the equivalence class structure implied in 

the information system. The set of attributes which 

is common to all reducts is called the core. Finding 

reducts and their cores is very useful. The elimina-

tion of attributes will minimize the consumption of 

computer resources without changing the nature or 

characteristics of the information system. This is 

what makes RST so efficient for dealing with a large 

volume database. 

To verify the result of analysis, 10% of the data are 

normally preserved as testing data. The accuracy of 

the analysis is then calculated by (A+D)/ 

(A+B+C+D), where A, B, C and D denote: 
          Predicted 

Actual 1 0 

1 A B 

0 C D 

3.3. Process of Analysis  

The major steps in the analysis used in this study to 

find corresponding factors which cause RC bridge 

deck deterioration, are summarized below: 

All the factors under consideration are listed. Factors 

obtained from a review of past studies and the at-

tributes associated with bridge features in the TBMS 

are examined as extensively as possible. 

Data are then pre-processed for data mining. Cate-

gorical data (e.g., type of pavement) are simply con-

verted to ordinal numbers, while numerical data 

(e.g., average annual rainfall) are categorized using 

K-Means Clustering. 

Data mining is conducted. The relevant factors lead-

ing to the deterioration of bridge decks are explored 

by RST. 

The results are validated by comparing them with 

independent statistical tests. It is proposed that the 

Mann-Whitney U (MWU) test be utilized to assess 

the correlation between identified factors and their 

corresponding deterioration type. 
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A flowchart of the analysis process is shown in Fig-

ure 3. 

 

 

Figure 3. Flowchart of the Analysis 

To facilitate the analysis, computer programs such 

as RSES (Rough Set Exploration System) and SPSS 

(Statistical Package for the Social Sciences) are used 

for data mining, K-Means Clustering and statistical 

testing. 

4. DATA TREATMENT  

4.1. Data Collection  

The factors leading to the deterioration of bridge 

decks can be divided into four categories: functional, 

structural, environmental, and traffic. We identify 29 

factors from past studies and the attributes listed in 

the TBMS. These factors are summarized in Table 2. 

We gather data from a total of 2,128 bridges in the 

Taiwan National Freeway System. Both the values 

of the attributes and the visual inspection records for 

each bridge are collected. 

The analysis now focuses on the six most commonly 

seen types of deterioration: cracking, spalling, efflo-

rescence, corrosion of rebar, and breakage and hon-

eycombing of the bridge decks.  Samples for analy-

sis are sorted into the six types. In TBMS, bridge 

conditions are assessed in terms of a 0 to 4 rating 

scale for the degree, extent, and relevancy (DER) by 

inspectors (see Table 3). All samples with a D≥2 

rating are considered as deteriorated in this study. 

The final samples of each type are summarized in 

Table 4. 

Table 2. Candidate Deterioration Factors 

No. Functional Attributes 

1 

2 

3 

4 

5 

6 

▲ 

▲ 

▲ 

▲ 

▲ 

▲ 

Bridge Age 

No. of Spans 

No. of Lanes 

Length of Bridge 

Area of Bridge Deck 

Length of Max. Span 

 Structural Attributes 

7 ■ Structural Type 

8 ■ Type of Pavement 

9 ■ Type of Girder 

10 ■ Type of Girder Material 

11 ■ Type of Expansion Joint 

12 ■ Type of Bracing for Earthquake 

13 ■ Type of Bearing 

14 ■ Designed Live Load 

15 ■ Type of Pier 

16 ■ Type of Pier Material 

17 ■ Type of Pier Foundation 

18 ■ Type of Abutment 

19 ■ Type of Abutment Foundation 

20 ■ Type of Wing Wall 

 Environmental Attributes 

21 ■ Whether Over Water or Not? 

22 ▲ Distance from Coast 

23 ■ Significance of Acid Rain 

24 ▲ Avg. Annual Rainfall 

25 ▲ Peak Monthly Rainfall 

26 ▲ Avg. Rainy Days per Year 

27 ▲ Max. Rainy Days in a Month 

28 ■ Soil Profile 

 Traffic Attributes 

29 ▲ Avg. Annual Traffic Volume 

■Categorical Data    ▲Numerical Data 

Table 3. DER Rating after Visual Inspection 

 0 1 2 3 4 

D No such item Good Fair Poor Sever 

E 
Cannot be 

inspected 
＜ 10% ＜ 30%  ＜  60% ＜ 

R 
Cannot be 

decided 
Minor Small Medium High 

 

Listing Factors for  

Consideration 

Literature Review & 

TBMS 

Pre-processing of Data 

Data Mining for Factors 

Code Conversion &  

K-Means Clustering 

Applying RST 

Applying Mann-

Whitney U Test Statistical Validation 



 774 

Table 4. No. of Samples Showing Deterioration 

Type of Deterioration 
No. of Samples Showing Dete-

rioration 

Cracking 716 

Spalling 99 

Efflorescence 704 

Corrosion of rebar 525 

Breakage 858 

Honeycombing 177 

4.2. Code Conversion of Categorical Factors 

As summarized in Table 2, 17 out of 29 factors are 

categorical; these factors are represented in a nomi-

nal scale. The samples are simply clustered into 

finite discrete categories. Obviously, further analysis 

is more convenient if each category is represented 

by a set of ordinal numbers. For instance, there are 6 

girder types in the data inventory; each type is as-

signed a different number (see Table 5). 

Table 5 Types of Girders and Code Conversion 

Types of Girders Code 

I Section 1 

T Section 2 

U Section 3 

Slab Beam 4 

Box Section 5 

Others 6 

Code conversion can be done similarly for all other 

categorized factors. It should be noted that the ordi-

nal numbers do not represent any interval or rating 

scale. 

4.3. Clustering of Numerical Factors  

Unlike categorical factors, numerical factors do have 

an interval or rating scale. The values of factors can 

cover a wide range when one is working with a huge 

amount of data. Therefore, a reasonable and objec-

tive way to partition the data set is required. We use 

a well-known algorithm, K-Means Clustering, to 

solve this problem. However, it is particularly trou-

blesome to decide on the value of K, since the num-

ber of clusters is often arbitrary. There is no general 

theoretical solution to find the optimal number of 

clusters for a given data set. Our approach is to 

compare the results of multiple runs with different K 

and choose the best one according to a given crite-

rion, i.e., the accuracy of the RST analysis. For ex-

ample, the length of a maximum span is one of the 

numerical factors. Trial partitions of data set are 

shown in Table 6. 

Table 6. Partitions for the Length of Max. Span 

K Centroids (m) Partitions (m) 

37 0~200 
2 

346 >200 

34 0~60 

90 60~300 3 

378 >300 

34 0~60 

87 60~200 

293 200~400 
4 

425 >400 

27 0~35 

45 35~72 

100 72~200 

293 200~400 

5 

425 >400 

The code conversion for each partition with different 

K is carried out in a similar fashion. Afterwards, 

RST trial analysis for different K is conducted. The 

outputs for each case are shown in Fig.4-Fig.6. The 

trial process shows us that K=4 results in the best 

accuracy of analysis. Therefore, 4-partitions offer 

the best clustering for the length of maximum span 

factor. With this approach, we can find out which 

clustering solution best reflects the significant char-

acteristics of the data. The other numerical factors 

are treated in the same way (Figures 4–6). 

 

Figure 4. Accuracy for K=2 (0.374) 
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Figure 5. Accuracy for K=3 (0.635) 

 

Figure 6A. Accuracy for K=4 (0.649) 

 

Figure 6B. Accuracy for K=5 (0.586) 

5. EXPLORING FACTORS 

5.1. Mining Factors by RST  

After the raw data have been treated (i.e., clustering 

and code conversion), the next step is to extract the 

relationship between the factors and deterioration of 

the RC bridge decks. As mentioned above, the data 

are represented in the form of an information table. 

Each row of the table represents a bridge sample, 

and every column represents an attribute associated 

with that sample. Factors to be identified are defined 

as condition attributes, while the state of deteriora-

tion (i.e., whether D≥2 or not) is taken as the deci-

sion attribute. The information table is now called 

the decision table, and includes both the condition 

attributes and the decision attribute for each sample. 

Table 7 shows an example. 

Table 7. Example of a Decision Table 

Condition Attributes Decision Attributes 
U 

a1 a2 a3 D≥2 

x1 2 1 3 0 

x2 3 2 1 1 

x3 2 1 3 1 

x4 3 2 2 0 

x5 1 1 4 0 

In the table, x1~x5 indicate samples associated with 3 

condition attributes a1~a3, for each attribute in the 

universe. It appears that all condition attributes be-

tween x1 and x3 are identical which however, results 

in a different decision attribute. In other words, there 

is a logically unacceptable inconsistency in the table. 

Any sample showing an inconsistency of this kind 

must be removed. This is done step-by-step until no 

conflict remains. The entries remaining from Table 7 

are shown in Table 8. 

Table 8. Decision Table without Inconsistencies 

Condition Attributes Decision Attributes 
U 

a1 a2 a3 D≥2 

x2 3 2 1 1 

x4 3 2 2 0 

x5 1 1 4 0 

Eventually, a decision table without any inconsis-

tency is obtained. Some attributes may not contrib-

ute to changes in the consistency of a table. For ex-

ample, x2, x4 and x5 are always consistent with each 

other regardless of whether attribute a1 is neglected 

or not. That is, a1 can be pruned without affecting 

the consistency of Table 8. In contrast, removing 

attribute a3 does affect the consistency (i.e., resulting 

in an inconsistency between x2 and x4), and hence is 

not removable. The removal of a1 and a3 are shown 

in Table 9 and Table 10, respectively. 
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Table 9. Removal of a1 in Table 8 

Condition Attributes 
Decision At-

tributes U 

a2 a3 D≥2 

x2 2 1 1 

x4 2 2 0 

x5 1 4 0 

Table 10. Removal of a3 in Table 8 

Condition Attributes 
Decision At-

tributes U 

a1 a2 D≥2 

x2 3 2 1 

x4 3 2 0 

x5 1 1 0 

A reduct is the set of remaining condition attributes 

after taking out the removable ones. Obviously, 

there are several paths whereby this can be done. 

The RST computer tools can go through all possible 

paths and produces all reducts. The set of attributes 

which is common to all reducts, called the core, 

represents the set of factors which cannot be ignored. 

The degree of significance of factors can be meas-

ured by the reduct occurrence rate, where the higher 

the occurrence rate, the greater the significance. In 

this study, significant factors are those with an oc-

currence rate greater than 75% while the minor ones 

have a rate between 10-75%. The remainder, that is, 

occurrence rate less than 10%, are classified as "not 

related." 

To facilitate the approach we utilize a well known 

RST tool developed by the University of Warsaw 

[14–15], RSES (Rough Set Exploration System 

v2.2.2), to conduct the analysis. We build the deci-

sion table shown in Figure 7. In column A, "if D≥2", 

indicates the decision attribute while the others are 

condition attributes. The reducts are then mined by 

RSES. An example of the output is shown in Figure 

8. Six types of RC bridge deck deterioration are 

analyzed. Both major and minor factors are summa-

rized in Tables 9-10. 

  

Figure 7. Decision Table 

 

 

 

Figure 8. Reducts Mined by RSES 
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Table 9. RC Bridge Deck Deterioration Factors 

Deterioration 

Types 

Major Factors 

Occurrence Rate ≥75% 

Minor Factors 

10% ≤ Occurrence Rate < 75% 

Cracking � Peak Monthly Rainfall 

� Max. Rainy days in a Month   

� Type of Girder Material 

� No. of Lanes 

� Expansion Joint 

� Type of Pier 

� Whether Over Water or Not? 

� Designed Live Load 

� Bridge Age 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� Max. Span 

� Structural Type 

� Type of Pier Material 

� Type of Pier Foundation 

� Type of Girder 

� Type of Abutment 

� Type of Abutment Foundation 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Soil Profile 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

� Traffic Volume 

Efflorescence � Peak Monthly Rainfall 

� Max. Rainy days in a Month   

� Type of Pier 

� Soil Profile 

� Type of Girder Material 

� Bridge Age 

� Whether over Water or Not? 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� No. of Lanes 

� Max. Span 

� Structural Type 

� Type of Pier Material 

� Type of Pier Foundation 

� Type of Girder 

� Type of Abutment 

� Type of Abutment Foundation 

� Expansion Joint 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Designed Live Load 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

� Traffic Volume 

Corrosion of 

Rebar 

� Peak Monthly Rainfall 

� Traffic Volume 

� Bridge Age 

� Whether over Water or Not? 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� No. of Lanes 

� Structural Type 

� Type of Pier 

� Type of Pier Foundation 

� Pavement Material 

� Type of Girder 

� Type of Girder Material 

� Type of Abutment 

� Type of Abutment Foundation 

� Expansion Joint 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Designed Live Load 

� Soil Profile 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

� Max. Rainy days in a Month 

Spalling � Peak Monthly Rainfall � Bridge Age 

� Whether over Water or Not? 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� No. of Lanes 

� Structural Type 

� Type of Pier 

� Type of Pier Foundation 

� Type of Girder 

� Type of Abutment 

� Type of Abutment Foundation 

� Expansion Joint 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Designed Live Load 

� Soil Profile 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

� Max. Rainy days in a Month 

� Traffic Volume 
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Table 10. The Deterioration Factors of RC Bridge Decks (Continued) 

Deterioration 

Types 

Major Factors 

Occurrence Rate ≥75% 

Minor Factors 

10% ≤ Occurrence Rate < 75% 

Breakage 

� Peak Monthly Rainfall 

� Max. Rainy days in a Month 

� Traffic Volume 

� Bridge Age 

� Whether over Water or Not? 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� No. of Lanes 

� Max. Span 

� Structural Type 

� Type of Pier 

� Type of Pier Foundation 

� Type of Girder 

� Type of Girder Material 

� Type of Abutment 

� Type of Abutment Foundation 

� Pavement Material 

� Expansion Joint 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Designed Live Load 

� Soil Profile 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

Honeycombing � Peak Monthly Rainfall 

� Max. Rainy days in a Month 

� Bridge Age 

� Whether over Water or Not? 

� Length of Bridge 

� Area of Bridge Deck 

� No. of Spans 

� No. of Lanes 

� Max. Span 

� Structural Type 

� Type of Pier 

� Type of Pier Material 

� Type of Pier Foundation 

� Type of Girder 

� Type of Girder Material 

� Type of Abutment 

� Type of Abutment Foundation 

� Expansion Joint 

� Type of Wing Wall 

� Type of Bearing 

� Earthquake Bracing 

� Designed Live Load 

� Soil Profile 

� Distance from Coast 

� Avg. Rainy Days per Year 

� Avg. Annual Rainfall 

� Traffic Volume 

 

5.2. Data Findings and Results 

In common with most concrete structures, the six 

types of deterioration in this study can be caused by 

either physical or chemical attacks or even the inter-

action of both. Since the data collected from the 

historical visual inspection records in TBMS are 

based on inspections, these records reflect the view-

points of the inspectors. For instance, "breakage" is 

the most common type of damage noted, but break-

age could be the result of several types of events that 

would be seen and noted by the inspectors. However, 

"honeycombing" is usually caused by poor compac-

tion or vibration during concrete casting and is re-

paired as soon as the form is stripped, so that it is 

rarely seen. Other types of deterioration usually 

follow a certain sequence. For example, "cracking" 

can be initially induced by traffic action but the 

opening of the crack can accelerate "efflorescence" 

and "corrosion of rebar" which are also affected by 

chemical reactions (i.e., leaching and carbonation). 

Finally, "spalling" appears when the rusting of the 

steel forces the concrete to crack. As the deteriora-

tion is in progress, the earlier degrading phenome-

non (e.g., cracking) should be seen more than the 

later ones. While recalling the figures in Table 4, 

"breakage" and "cracking" account for the largest 

portion (i.e., 28% and 23% respectively) of total 

samples showing deterioration. However, "spalling" 

and "honeycombing" are only 6% and 3% respec-

tively. Therefore, the distribution of samples for 

different types of deterioration in Table 4 can be 

considered as a result of an objective sampling. 

Data mining indicates that environmental factors, 

mainly weather-related factors, have a significant 

effect on all types of deterioration. "Type of Pier," 

"type of girder material" and "traffic volume" are 

also rather significant. All major factors and their 

related deterioration types are summarized in Ta-

ble 11. 
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Table 11 Major Factors for Each Deterioration Type 

 
Cracking Efflorescence 

Corrosion of 

Rebar 
Spalling Breakage Honeycombing 

Whether over Water or Not? �      

No. of Lanes �      

Type of Pier � �     

Type of Girder Material � �     

Type of Expansion Joint �      

Designed Live Load �      

Soil Profile  �     

Peak Monthly Rainfall � � � � � � 

Max. Rainy Days in a Month � �   � � 

Traffic Volume   �  �  

 

Obviously, more major factors in cracking or efflo-

rescence than in other deterioration types are identi-

fied by RST. The outputs of RSES show that the 

reducts in cracking and efflorescence are larger than 

those in other deterioration types. The average size 

of reducts in cracking and efflorescence is 13 while 

it is about 8 in spalling and breakage. As a result, 

more major factors are produced as larger reducts 

have more factors in common with each other. It is 

noted that "peak monthly rainfall" and "Max. rainy 

days in a month" are more significant than "Avg. 

annual rainfall" or "Avg. rainy days per year." This 

suggests that intensive rainfall in a short period has a 

more significant affect on bridge decks deterioration. 

In addition to weather-related factors, "whether over 

water or not?" "No. of lanes", "type of pier", "type of 

girder material", "expansion joints", and "designed 

live load" are identified as major factors related to 

"cracking". Comparison of samples showing deterio-

ration or not provides that higher percentage of RC 

bridge decks are cracked if the bridges are over wa-

ter, having 3 or more lanes, shored by multi-columns 

bent or the deck slabs are cast on steel girders. On 

the other hands, less bridge decks are found cracked 

while the traffic surcharge load is taken into account 

in design or modular type of expansion joint are 

used. This suggests that the action of traffic and 

selection of expansion joint has a great impact on 

cracking in bridge decks. 

Some major factors in cracking, for example, "type 

of pier", "type of girder material", also turn up in 

efflorescence. Besides, the distributions of samples 

showing deterioration in both are found similar, too. 

This implies that efflorescence somewhat correlates 

with the occurrence of cracking in RC bridge decks. 

Unexpectedly, "soil profile" is recognized as a major 

factor contributing to efflorescence. In fact, more 

RC bridge decks are found to have this type of dete-

rioration while the bridges were built on soft strata 

(e.g. Taipei basin). 

"Traffic volume" is identified as a major factor lead-

ing to rebar corrosion and breakage. The number of 

samples showing deterioration suggests that there 

seems to be a positive correlation between traffic 

volume and the probabilities of deterioration in both 

types. 

"Distance from coast" is usually regarded as a major 

factor affecting to rebar corrosion by intuition. 

However, it is not so significant in this study. This is 

understandable since all the bridge samples were 

collected from national freeways which are consid-

erably away from coast. Chen [7] indicated that the 

salt damage is unobvious while the concrete struc-

tures are located more than 10 km away from coast.  

5.3. Statistical Testing   

The deterioration factors obtained through RST are 

compared with the results obtained from a statistical 

approach. The MWU, one of the best-known non-

parametric significance tests, is employed to assess 

the correlation between the identified factors and 

corresponding deterioration type. Generally, the 

MWU is used for assessing whether two observa-

tions come from the same distribution. The null 

hypothesis is that the two samples are drawn from a 

single population, and therefore that their probability 

Deterioration 
Factors 
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distributions are equal. In this study, we consider 

that a factor is significant, if the probability distribu-

tions between observations showing deterioration or 

non-deterioration are different. The null hypothesis, 

denoted as H0, is stated as follows: "a factor is not 

related to a specified deterioration type". The level 

of statistical significance is 5%, which indicates the 

probability of the test statistic (i.e. U) falling into the 

rejecting region when the null hypothesis is correct. 

The MWU requires the two samples to be independ-

ent, and the observations to be either in ordinal or 

rating scale. In other words, the test is meaningful 

only when conducted on numerical factors. The 

MWU is performed by a commonly use computer 

software, SPSS. The MWU results and comparison 

with RST results are summarized in Table 12. 

It appears that according to MWU most factors are 

related to deterioration. That is, the probability dis-

tributions for the deteriorated and non-deteriorated 

samples are, in most cases, recognized as signifi-

cantly different. Obviously, all the major factors and 

most of the minor factors identified by RST are also 

recognized as related by MWU. The results obtained 

from the two approaches are almost identical for 

each type of deterioration, although a few discrepan-

cies do exist. This is understandable since the nota-

tions as well as the algorithms of the two approaches 

are so different. For example, RST generates reducts 

by going through all attributes, while MWU adopts 

two sets of observations (i.e.,a factor vs. deteriora-

tion or not) for each run. 

Table 12. Comparison of Results Obtained from RST and MWU 

Cracking Efflorescence 
Corrosion of 

Rebar 
Spalling Breakage Honeycombing 

Factors 

RST MWU RST MWU RST MWU RST MWU RST MWU RST MWU 

Bridge Age □ ○ □ ○ □ ○ □ ○ □ ○ □ × 

No. of Spans □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ 

No. of Lanes ■ ○ □ ○ □ ○ □ ○ □ ○ □ ○ 

Length of Bridge □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ 

Area of Bridge Deck □ ○ □ ○ □ × □ × □ ○ □ ○ 

Max. Span □ ○ □ × × × × × □ ○ □ ○ 

Traffic Volume □ ○ □ ○ ■ ○ □ ○ ■ ○ □ ○ 

Distance from Coast □ × □ × □ ○ □ ○ □ × □ ○ 

Avg. Annual Rainfall □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ 

Avg. Rainy Days per Year □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ 

Peak Monthly Rainfall ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ ■ ○ 

Max. Rainy Days in a Month ■ ○ ■ ○ □ ○ □ ○ ■ ○ ■ ○ 

Matching Accuracy 92% 83% 92% 92% 92% 92% 

■: major factor  □: minor factor   ○: related    ×: not related 
6. CONCLUSIONS AND SUGGESTIONS  

6.1. Conclusions  

In this study we first select 29 possible factors 

leading to RC bridge deck deterioration. RST is 

then used to match the factors to the corresponding 

deterioration type. To facilitate this process we use 

visual inspection data for 2,128 bridges, as well as 

the relative weather and traffic records. The gath-

ered data are pre-processed by K-Means Cluster-

ing and Code Conversion. A brief review of the 

collected data shows that the distribution of the 

samples showing deterioration matches the sequence 

of deterioration types normally occurred in RC struc-

tures. The findings obtained as a result of data mining 

show that weather-related factors are rather significant 

in almost all types of deterioration. Furthermore, the 

short-term and intensive effects, such as peak monthly 

rainfall and the maximum number of rainy days in a 

month, have an even bigger effect on bridge deck de-

terioration. In addition we find that whether over water 

or not, number of lanes, type of pier, and type of 

girder material, designed live load and the type of 

expansion joint are major factors in cracking. Factors 
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in cracking such as type of pier and type of girder 

material also turn up in efflorescence. It appears 

that cracking and efflorescence are somewhat cor-

related. "Traffic volume" is identified as a major 

factor leading to rebar corrosion and breakage. 

However, distance from coast is not significant to 

rebar corrosion in this study as our samples are 

considerable away from coast. 

To validate the approach, the factors mined by 

RST are compared to the results obtained by 

MWU. It is found that the results are quite close 

although few discrepancies exist. 

6.2. Suggestions for Future Research 

Although this study demonstrates a systematic 

approach to identify the deterioration factors of 

RC bridge decks, some efforts can be made in 

future such as: 

The MWU test requires observations to be in an 

ordinal or rating scale; categorical factors cannot 

be tested. An appropriate statistical approach is 

required to assess the correlation between cate-

gorical factors and their corresponding deteriora-

tion type. 

Visual inspection data are often seen to be rather 

subjective and error-prone. It is recommended that 

steps be taken to eliminate logical mistakes or 

irrational records before performing the analysis.   

A systematic approach for identifying RC bridge 

deck deterioration factors is introduced in this 

study. The same approach can be carried out for 

other bridge components. It is encouraged that the 

method be developed further. An expert system for 

diagnosis of bridge health based on the factors 

identified could be established. 
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