Automation and Robotics in Construction XI
D.A. Chamberlain (Editor)
© 1994 Elsevier Science B.V. All rights reserved.

AEC Collaborative Information Systems: From Requirements
to Architecture

Hossam El-Bibany

Assistant Professor, The Pennsylvania State University, Department of Architectural
Engineering, University Park, PA 16802-1416, U.S.A.

Abstract

A collaborative information system must fit the market, organization, culture, and
norms of the group it support. In the Architecture/Engineering/Construction (AEC)
industry, a computer-based framework for collaboration needs to consider issues such as
its application suitability in various project organizations, and the ability to operate under
partial knowledge. This paper briefly presents the philosophy behind and the basis for a
conceptual design of a human-computer architecture to facilitate design, management and
coordination in AEC projects. Section 2 presents the framework and the need for
parametric representation and constraint-based reasoning as a unifying methodology. The
principles behind a system architecture are then described in Section 3 with a brief
description of components and user interaction. The implementation environment and
testing of a prototype system are finally presented in Section 4.

1. INTRODUCTION

The creation of a facility is a complex, highly-interdependent process. Typically, no
individual possesses all of the required knowledge and skills, so design, construction and
management teams that include participants from each required domain are formed to
collaborate and jointly create a single product. As projects become increasing complex,
additional participants are added to the team. While this approach supplies the needed
expertise, it also introduces a significant coordination burden and can decrease the overall
efficiency of the process.

Computers have long supported various tasks over the life-cycle of the project (e.g.,
architectural modeling, structural design, project scheduling). For certain tasks they are
generally indispensable, while in other areas their shortcomings often overshadow their
advantages [Skibniewski 90]. Computer technology may provide tools for design,
management and coordination in human-computer collaborative systems. A great deal of
research is ongoing into integration between various computer tools to support
collaboration among the various project participants. Most try to achieve this integration
through knowledge-based support relying on various software architectures (e.g.,
blackboard architecture, cooperative distributed problem solving architectures, etc.) [Levitt
et al 91]. However, as collaborative information systems must reflect the market,

515

516

organization, culture, and norms of the group it supports, the nature and project
organization of the Architecture/Engineering/Construction (AEC) industry makes it almost
impossible to just rely on knowledge-based support without standard representation [El-
Bibany 92].

This paper briefly presents the philosophy behind and the basis for a conceptual design
of a human-computer architecture to facilitate design, management and coordination in AEC
projects. The framework that builds on specific AEC industry factors is first presented.
The need for parametric representation and constraint-based reasoning are described within
the framework requirements. The principles behind a system architecture are then
described with a brief description of components and user interaction. Implementation
environment and testing of a prototype system are finally presented.

2. THE FRAMEWORK

The framework that supports collaboration over the life-cycle of a project in the AEC
industry assumes that process coordination and human interaction are the basis for
collaboration. Specific organizational factors related to the team, product, process and
managed information over the life cycle of an AEC project special design of collaborative
information systems. The main objective of this framework is to provide collaborative
information systems with six main capabilities:

* Provide design and management tools.

» Coordinate human participants over the life-cycle of the project.
» Serve as a knowledge integration and exchange tool.

* Avoid decision conflicts that can lead to failures.

+ Create a change history for future use and liability tracking.

* Provide a basis for evaluating proposed changes.

In providing these capabilities, these systems should be flexible enough to consider the
change of project organization over time, to allow work to proceed with partial knowledge,
to create and maintain dependency information among data items as needed by various
users, and to have powerful explanation facilities clarifying their state of knowledge.

2.1. Constraint-based Representation and Reasoning

The design of information systems in general should reflect the needs of the
organization operating in its specific industry. Specific AEC industry organizational factors
call for special needs in the design and management of collaborative information systems.
[El-Bibany et al 91] identified these needs, studied various collaborative information
systems models developed for other industries, as well as designed a generic model (Figure
1) that fits these needs.

In this model a generic and flexible coordination mechanism is the core of the system,
facilitating interaction between all types of agents — human, machine, databases,

517

knowledge-based systems, simulation systems, etc. A central project database is no
longer considered the focus of the system. Databases are merely agents that contribute to
the constraints imposed on the overall problem. The coordination system will ultimately be
much more flexible, but will require a very low level representation of knowledge.

DataBase Knowledge-Based
System
[) o

® Sizmlstion L
System

Figure 1. Collaboration System Concept

To achieve this flexibility in a standard representation, the main reasoning technique
should handle various types of AEC problems in the same manner. Parametric constraint-
based representation and reasoning will achieve this goal [Chan and Paulson 87, 88,
Serrano 87, Lansky 88]. In addition, constraint-based reasoning was chosen based on the
following:

« Its flexibility to accommodate the various design and management tasks.
« It creates a domain-independent flexible methodology.
« The existence of mathematical models for various tasks.

 The ability to model the overall problem in the form of real life entities and
constraints representing their behavior and relationships.

2.2. Constraint-Management Methodology

Once the problem is formulated in terms of mathematical constraints, a constraint
analysis and solution needs a plan of the sequence of the constraints to be solved. In a
cooperative system, where different users interact and enter constraints, one cannot assume
that there is a certain sequence of constraint utilization beforehand (any predefined model
would constrain the capabilities of the system to the extent that general coordination would
not be feasible). The constraint-management system will, hence, have to find this sequence
as well as identify conflicting and redundant constraints, which is a planning process for
the use of constraints. The presented methodology uses standard graph algorithms for

518

solving this problem. The major advantages of such representation are: 1) it is a very
general task and domain independent representation, 2) it can analyze arbitrary sets of
constraints, and 3) it allows both qualitative and quantitative reasoning.

The graph-based representation for constraints and the problem-solving strategy using
constraint networks that is used in this research is based on the work described in [Serrano
87]. The major advantages of this work is that it provides the planning capability needed
for solving constraint sets formed by various project participants, it avoids local constraint
propagation and it may discover the exact constraints that introduce inconsistencies in a
specific constraint set. To achieve the goals described in this paper, Serrano’s work was
further enhanced by integrating interval-based mathematical capabilities. [El-Bibany and
Paulson 94] illustrates the methodology as applied to design and construction planning and
scheduling.

The power of the proposed constraint-based integration engine is that the machinery for
updating and adapting to the changes is built-in. An important change will propagate
through the system and different parties would then be notified of any problem and be
queried for solutions (e.g., relaxing one of their constraints, if possible).

In this constraint-based framework, a distinction is made between the constraints
(which are the desired relationships) and the means of enforcing these constraints. The
mechanism of enforcing constraints is invariant across different problems; only the
constraints differ from one problem to the next. This dichotomy proves useful because, in
theory and as proved by the current status of this research, one can concentrate on the
correct formulation of a problem in terms of constraints, assuming that the computational
mechanism has been correctly implemented [Chan 86]. This property is used to create
standards for constraint-based representation in the system architecture.

3. THE ARCHITECTURE

The architecture offers fundamental changes to the way that project design and
management computer systems are built and used. The architecture is flexible enough to
accommodate the various tasks required to create of the product (facility) (e.g., computer
aided design (CAD), finite element analysis, project organization, planning and control)
under a unified representation and reasoning methodology. The unified methodology
serves as the basis for robust knowledge integration and information processing among the
various project participants over the life-cycle of the project.

The basic approach is to integrate operations research models and artificial intelligence
techniques to create an architecture for the required integrated system. Low-level
mathematical models represent the structure and behavior of various project entities
(spaces, beams, activities, resources, etc.) in a standard representational model.
Mathematical equalities and inequalities also represent project constraints (requirements)
among the attributes of the various entities. A sophisticated constraint-management
methodology coupled with interval-based mathematics is the basis for model integration as
well as the quantitative and qualitative reasoning capabilities of the framework.

519

Formalization and categorization of domain knowledge, as related to the framework, serve
as the core of future metaknowledge modules to help in setting the system in various
domains.

3.1. Core of the Architecture: Entities and Constraints in a Standard
Representation

The framework is based on the fact that coordination can only be achieved through
integration of knowledge about, and various requirements imposed on, project entities.
Project participants look at the project in terms of individual entities (spaces, doors, beams,
pipes, formwork, cranes, compressors, pumps, locations, activities, etc.). There are two
things that can be captured: the knowledge that is encapsulated within the entities, and the
relationships among the entities. Both may be expressed in the form of entity internal
constraints (representing the internal structure and behavior of an entity), entity-to-entity
constraints (representing the relationships among entities) and boundary constraints
(representing external constraints imposed on an entity set).

For the architecture to reflect the AEC organizational needs, it should allow the creation
of new types of entities in a standard format. The representational elements of the
architecture with their standards and reasoning mechanisms are documented in [El-Bibany
92].

3.2. User Interaction

Once the system is set with specific entity classes, project participants interact through
the instantiation of project specific entities and imposing the entity-to-entity and boundary
constraints (through domain and project specific logic) to represent the required
relationships. The system translates their actions into the underlying constraint-based
representation for analysis and solution.

As participants propose changes, new information requirements, constraints are
automatically propagated to other participants who need to know about them, while
maintaining the constraints that were previously specified and remain unchanged. Design
parameters are automatically adjusted to satisfy the new requirements if possible; if not, all
parties concerned are notified immediately so that negotiations can proceed to find a
mutually agreeable solution. The system flags conflicts and assists in determining the
cause of problems, allowing participants to focus their attention on solving the right
problem in a better way. Users can query the integrated object knowledge base for the
existence of certain relationships between the attributes of different entities and evaluate the
global impact of proposed design changes. Advanced qualitative reasoning capabilities
may also be supported by the constraint-management system.

3.3. Principles
The architecture is built on the following principles:
Unified Representation and Reasoning. Representation and reasoning are based on one

uniform constraint-management methodology for various tasks based on the argument that
computers can look at various tasks in the same way using mathematics and logic.

520

External Knowledge Access Capabilities. Every object has the ability to access external
information (external databases, knowledge-based systems, etc.) under a flexible graded-
reachability architecture.

User-Controlled, Flexible Representation. To fit the AEC industry needs for dynamic
project organization and flexible, free-to-define task and task integration methodologies, the
architecture provides system managers (first level of users) with the ability to define
prototypes of their own entities with their behavior. Day-to-day users (second level of
users, e.g., designers, planners, etc.) would interact with the system instantiating project-
specific entities and their logical constraints. The constraint-management system would
handle interaction and information management.

Context-Based Reasoning. Context-based reasoning and change-management to
support life-cycle integration are based on extensive truth-maintenance capabilities [de
Kleer 86 a, b, ¢, Shoham 87]. Internal truth maintenance controls dependency-directed
propagation. An external truth maintenance system controls context-based reasoning.

Customized User Interfaces. The decision support tool is based on the assumption that
unconstrained user interaction is the basis for collaboration. Customized user interfaces are
therefore supported.

Formalization of Representation. For a general representation, differentiation between
domain and non-domain knowledge is important. Furthermore, to utilize such an
architecture in different organizations with different requirements, specification,
categorization and formalization of domain control knowledge representation become the
basis for initialization of the system. In the proposed architecture, domain entities and their
behavior are represented in a non-domain specific mathematical and parametric
representation. Entity relationships and their implications are categorized and formalized
with respect to this representation.

Metaknowledge Control. The formalization of representation is envisioned as the basis
for future metaknowledge modules (in the form of a knowledge-based system) with the
main task of helping system managers define the entities and their required interaction in
various organizations.

4. IMPLEMENTATION

Object-Oriented Logic Programming is the primary tool for prototype implementation.
Prolog*+ on a Macll provides us with the object-oriented programming environment based
on advanced logic programming techniques. It proved its power in most of the utilities
needed for this research [Lansky 88].

Prolog as a logic programming language has a sound theoretical basis, being modeled
on first-order predicate calculus. As a declarative type-free language with built-in
unification and inference engine, Prolog results in an increase in both productivity and
creativity of the programmer. Its type-free capabilities increase its capability for meta-
programming with ease of updating and editing the programs. Ongoing theoretical research

521

[Cohen 90, Colmerauer 90] may render Prolog the most capable language for handling
constraint-management.

Prolog imposes few restrictions on the structure and organization of a program. This
can lead to problems when constructing large applications. The use of Prolog** as an
object-oriented programming environment (class hierarchies, abstraction, encapsulation,
message passing, polymorphism, and inheritance) helps programmers impose discipline
for organizing and managing their code as well as increase their productivity. Analysis of
advantages of object-oriented programming may be found in [Cox 86], [Booch 91].

The prototype has been tested on a simple problem in the AEC industry. The problem
consisted of the collaboration of an architect, structural engineer and construction manager
to create a simple building. The main purpose was to test the ideas presented in this paper
and refine the architecture. This stage has been performed successfully as documented in
[El-Bibany 92]. The next step is to model a more complicated problem and report on the
outcome.

5. CONCLUSIONS

This paper briefly presented the philosophy and ideas of a new direction of research on
collaborative information systems for the AEC industry. Specific industry factors related to
the dynamic project organization, the nature of the product, the design construction process
and the managed information influences the design of the presented framework. The
resulting system architecture needed to be based on a unifying representation and reasoning
methodology. Parametric representation and constraint-based reasoning played the role of
this unifying methodology. They also provided the basis for knowledge integration,
building and managing data dependency structures and identifying sources of conflicts
among the requirements imposed by the various project participants.

The work presented in this paper has been implemented in a prototype using object-
oriented logic programming techniques. Preliminary tests have served to build and refine
the architecture. The tests were further convincing of the power of this approach in design,
management and coordination tasks.

REFERENCES

Booch, Grady, 1991, Object Oriented Design with Applications, Redwood City CA:
Benjamin Cummings.

Chan, W.T., 1986, Logic Programming for Managing Constraint-Based Engineering
Design, Thesis submitted to Stanford University in partial fulfillment of the
requirements for the degree of Ph.D., March.

Chan, Weng-Tat, and Boyd C. Paulson, Jr., 1987, “Exploratory Design Using
Constraints,” Journal of Artificial Intelligence in Engineering Design and
Management, Vol. 1, No. 1, December, pp. 59-71.

522

Chan, Weng-Tat, and Boyd C. Paulson, Jr., 1988. “An Integrated Software Environment
for Building Design and Construction,” Proceedings of the Symposium on
Microcomputer Knowledge-Based Expert Systems in Civil Engineering, Hojjat
Adeli, Ed., 1988 Spring Convention, ASCE, May 9-11, pp. 188-202.

Cox, Brad J., 1986, Object-Oriented Programming, An Evolutionary Approach, Reading
Massachusetts: Addison-Wesley.

de Kleer, J., 1986a, “An Assumption-based TMS”, Artificial Intelligence, vol. 28, pp.
127-162.

de Kleer, J., 1986b, “Extending the TMS”, Artificial Intelligence, vol. 28, pp. 163-196.

de Kleer, J., 1986¢, “Problem Solving with the TMS”, Artificial Intelligence, vol. 28, pp.
197-224.

El-Bibany, H., 1992, Architecture for Human-Computer Design, Management and
Coordination in a Collaborative AEC Environment, Ph.D. Thesis, Civil Engineering
Department, Stanford University, June.

El-Bibany, H., Katz, G., Vij, S., 1991, “Collaborative Information Systems: A
Comparison of the Electronics and Facility Design Industries”, Technical Report #
48, Center for Integrated Facility Engineering, April.

El-Bibany, H., Paulson, B.C. and Chua, L. H., 1990, “Coordination between Project
Participants through Constraint Management,” Proceedings of the 7th International

Symposium on Automation and Robotics in Construction, Bristol, England, June 5-
7, pp- 505-513.

El-Bibany, H., Paulson, B.C., 1994, “Collaborative Knowledge-integration Systems: A
Tool for Design, Management and Coordination,” MicroComputers in Civil
Engineering, Volume 9, No. 1, February.

Lansky, A. L., 1988, "Localized Event-Based reasoning for MultiAgent Domains,"
Technical Note 423, Artificial Intelligence Center, SRI International, January.

Levitt, R. E., Dym, C. L., Jin, Y., 1991, "Knowledge-Based Support for Concurrent
Multidisciplinary Design," CIFE Working Paper # 10, Center for Integrated Facility
Engineering, Stanford University, January.

Serrano, D., 1987, Constraint Management in Conceptual Design, Sc.D. Thesis,
Massachusetts Institute of technology, December.

Shoham, Y., 1987, Reasoning about Change: Time and Causation from the Standpoint of
Artificial Intelligence, Ph.D. Thesis, Dept. of Computer Science, Yale University,
New Haven, Connecticut, 1987.

Skibniewski, Miroslaw J., 1990, “On the Use of Microcomputers by Small Contractors:

Implications of a survey and Recommendations for the Future,” Project Management
Journal, Vol.21, No. 1, March, pp. 25-31.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

