
A Plane Tracker for AEC-automation Applications 
 

Chen Feng *, and Vineet R. Kamat 
 

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, 
USA 

* Corresponding author (cforrest@umich.edu) 
 
Purpose  We propose a new registration algorithm and computing framework, the keg tracker, for estimating a camera's 
position and orientation for a general class of mobile context-aware applications in architecture, engineering, and con-
struction (AEC).  Method  By studying two classic types of natural marker-based registration algorithms, homography-
from-detection and homography-from-tracking, and overcoming their specific limitations of jitter and drift, our method 
applies two global constraints (geometric and appearance) to prevent tracking errors from propagating between consecu-
tive frames.  Results & Discussion  The proposed method is able to achieve an increase in both stability and accuracy, 
while being fast enough for real-time applications. Experiments on both synthesized and real world test cases demon-
strate that our method is superior to existing state-of-the-art registration algorithms. The paper also explores several 
AEC-applications of our method in context-aware computing and desktop augmented reality. 
 
Keywords: information technology, AR registration, tracking, context-aware computing 

 
INTRODUCTION 
The ability to recover a user’s pose (i.e., position and 
orientation within a certain coordinate system) is 
critical in many engineering domains such as 
Augmented Reality (AR), robotics, context-aware 
computing, and computer vision, addressed with 
different terminology. For simplicity, we will refer to 
all of these as the registration problem in this paper. 
Despite the rapid development of sensor 
technology—such as the global positioning system 
(GPS) and inertial measurement units (IMU), as well 
as angle sensors like the digital magnetic sensor, 
gyroscope, and accelerometer—this problem 
remains a challenge. A GPS signal is hardly 
available indoors, IMU suffers from the drifting effect1, 
and a magnetic sensor can be hugely affected by the 
changing environment, especially in challenging 
environments such as construction sites with all 
kinds of machines moving around, needless to 
mention the sensor’s annoying jitter effect. 
To overcome these technical insufficiencies, 
especially for indoor environments, infrastructure-
based technology has been studied, such as RFID-
based indoor tracking and wireless local area 
network (WLAN)-based indoor positioning. Yet these 
technologies are either costly or sensitive to the 
environment, and lots of work has to be put into the 
system calibration stage. Further, these 
technologies’ general inability to recover a user’s 
orientation is troublesome for 3D visualization. 
However, beyond all of those technologies, it is very 
interesting to note that a human being can figure out 
where s/he is to a certain degree of accuracy, given 
that s/he is familiar enough with that specific region 
of environment, mostly with the help of visual clues. 

Following this intuition, this paper proposes a new 
visual registration method called KEG planar object 
tracker, which essentially recovers the pose of the 
user, i.e. camera, in real-time from a set of planar 
markers whose own poses are known, capturing the 
idea that our tracker is familiar enough with the 
environment so as to perform an estimation of 
position and orientation, just as humans do. Firstly, 
the state-of-the-art methods in visual registration will 
be briefly introduced. Then among these methods, 
two important types of planar marker-based 
algorithms are discussed. The section following that 
explains the main contribution of this paper—an 
efficient improvement based on the previous two 
classes of algorithm frameworks, leading to the KEG 
tracker. Afterwards, several experiments are shown 
to demonstrate the superiority, under different 
objective quality measures, of KEG tracker. Also, two 
novel AEC applications that deploy KEG tracking 
algorithm is introduced. 
 

REVIEW OF PRIOR RELATED WORK 
The visual registration problem is actively studied in 
the computer vision community, and several 
algorithms have been proposed to address it. Based 
on their different assumptions on the environment 
(i.e. the surrounding world where visual registration 
is going to be performed), these algorithms can be 
classified into two groups2: known environment vs. 
unknown environment. The first group of algorithms 
is less computation-consuming and easier to design 
since the only unknown is the user’s pose. Because 
they have been well studied, and many related 
powerful algorithms have been proposed in the last 



two decades, it’s more realistic to apply them for 
solving real-world engineering issues. 
Within this class of methods, they can be further 
categorized into two groups: planar environment vs. 
non-planar environment. The first group is again 
easier to design because of the simple assumption 
made regarding the environment—a planar structure 
with known visual features. And the second group is 
more often applied in a controlled environment with 
limited space, such as a small manufacturing 
workspace. 
The authors choose to take advantage of plane-
based methods since planar structures are abundant 
in buildings, construction sites, and other human-
made environments where engineering operations 
are conducted, which makes this type of method 
very convenient to apply. In addition, a planar 
structure can simply be an image printed out on a 
piece of paper and attached to a wall/floor of a 
corridor, with nearly zero cost. All of those 
advantages make this method ideal for application, 
and merit its investigation. 
Plane-based methods can be further classified 
based on different visual features they adopt: fiducial 
marker vs. natural marker. 
A fiducial marker is composed of a set of visual 
features that are “easy to extract” and “provide 
reliable, easy to exploit measurements for the pose 
estimation”2. Usually those features are a set of 
black and white patterns forming simple geometry by 
circles, straight lines, or sharp corners and edges. 
Well known fiducial markers include ARToolKit3 and 
the newly proposed AprilTag4. 
Distinct from a fiducial marker, a natural marker does 
not require special predefined visual features. 
Instead, it treats any visual features in the same way. 
In this sense, almost any common image, ranging 
from a natural view to a company logo, can 
immediately be used as a natural marker. This major 
difference makes it much easier and more natural to 
set up a natural marker than a fiducial one. Users do 
not need to separately design special markers; they 
can simply take advantage of any meaningful 
pictures related to the problem of interest. 
In addition, one major downside to a fiducial marker 
lies in the fact that it usually depends on the four 
corner points or edges of the marker’s quadrangle to 
do further registration estimation, which is the reason 
that fiducial marker-based methods will fail even if 
one corner is not within view. This disadvantage 

does not exist in natural marker-based methods; in 
fact natural markers do not even require a marker 
image to be rectangular. 
Again, by the fundamental difference in the way they 
treat input images, natural marker-based methods 
form two groups: one group treats each input image 
independently, which is referred to as a detection-
based method, such as5,6; the other group needs two 
or more consecutive images as input, which is 
referred to as a tracking-based method, such as7,8. 
Since our proposed method evolves from both these 
algorithm groups, in the following sections we will 
explain in detail the process framework of each type 
of algorithms, as well as how it inspires and is jointly 
adapted to our proposed algorithm framework. 
 

HOMOGRAPHY FROM DETECTION 
In either fiducial marker-based or natural marker-
based algorithms, the fundamental task is to find the 
transformation between the marker image plane and 
the current camera plane which contains that current 
image frame. Such a transformation, called as 
homography, maps points on the marker image to 
their corresponding points on the current image 
frame with the following equation: 

 

where H is a 3x3 matrix representing the 

homography, ( , )x y  and ( , )x y   are the 

corresponding points on the two images, and s is an 
unknown scaling parameter. 
In fact, the general idea behind a plane-based 
registration algorithm is the fact that homography 
between two planes encodes the orientation and 
position information of one plane relative to another. 
From this perspective, registration is equivalent to 
finding the homography between the marker plane 
and the current camera plane. From projective 
geometry, one knows that with at least four point 
correspondences between two planes, their 
homography can be uniquely determined by solving 
a set of linear equations9. 
More complicated than fiducial marker-based 
algorithms, which take advantage of simple patterns 
to find correspondences and then estimate 
homography, natural marker-based algorithms 
require a lot more effort to solve a correspondence 
problem. 
Fig. 1 shows the generic algorithm framework of the 
homography-from-detection type of methods. The 
gray components need be loaded or calculated once 

Fig. 1. Homography-from-detection algorithm framework. 
 



during a computation, while the white components 
need to be updated for each new frame. H is the 
homography between the current frame and the 
marker image. K is the camera calibration matrix 
storing the focal length and some other intrinsic 
parameters, which can be calibrated in advance. R is 
the rotation matrix representing camera orientation, 
and T is the translation vector representing the 
position of camera center. For each incoming image 
frame, the first step is to detect a set of keypoints. 
Also, at the very beginning, a fixed set of keypoints 
has to be detected on the marker image. Interest 
point detection algorithms are usually applied in this 
step. 
The second step involves a matching problem, i.e. 
finding corresponding points between two sets of 
keypoints based on their local appearance. Among 
the state-of-the-art algorithms, the Scale Invariant 
Feature Transform (SIFT) algorithm5 is perhaps the 
most famous and widely used nowadays. Although 
the SIFT algorithm works very well under large 
variation of visual conditions, it is computation-
consuming, which makes it impractical to be applied 
directly in real-time applications, such as a 
registration problem, even after applying lot of 
approximation to SIFT. FERNs6, differs from SIFT by 
the requirement of an offline training stage. Only 
after a long period of training using the marker image 
can FERNs recognize different keypoints on that 
particular marker under different visual conditions. 
Although FERNs and other similar methods enjoy 
the high-speed advantage, their relatively low 
recognition rate make them less ideal in registration 
problem, as to be shown by our experiments. 
As mentioned, since most of these matching 
algorithms exploit a local feature descriptor, i.e. 
using image intensity information to describe a 
keypoint within only a limited neighboring region 
centered at that keypoint, mismatch is inevitable. In 
order to avoid most of these false matches, a robust 
estimation algorithm, such as the famous RANdom 
Sample And Consensus10 (RANSAC) is usually 
employed to estimate the homography. 
Once homography is found—through matrix 
decomposition techniques the camera position, the 
translation vector T, and orientation—the rotation 
matrix R, can be calculated. In our algorithm, a 
simple yet effective method11 was adopted. 
 

HOMOGRAPHY FROM TRACKING 
As shown in Fig. 2 homography-from-tracking type of 
methods explore relations between consecutive 
frames. Since images of two such frames usually 
look very similar, correspondences needed for 
homography estimation can easily be maintained by 
tracking each keypoint around its local neighborhood. 
Thus this type of methods can circumvent the 
hardest matching problem, since in this framework, 
matching between the marker keypoint and the 
current keypoint to get correspondences is only 
needed at the very beginning; after that, keypoint 
correspondences are maintained by a tracking 
algorithm. In fact, there are two such tracking 
algorithms that play crucial roles in our proposed 
method: the Kanade-Lucas-Tomasi (KLT) feature 
tracker7 and Efficient Second-order Minimization 
(ESM) algorithm. The KLT tracker’s ultimate goal is 
to find the feature point displacement within two 
consecutive frames. It assumes that during these 
two frames, the local appearance of the feature point 
x  does not change, and that the displacement is 
small. Then in order to find the optimal displacement, 
the algorithm formulates a least square problem to 
achieve a fast solution. While KLT’s motion model 
being fairly simple, ESM8 uses the 2D homography 
as motion model, and uses second-order 
approximation of the image function, thus leading to 
a global refinement algorithm with a faster 
convergence rate. 
 

GLOBAL GEOMETRIC/APPEARANCE CONSTRAINTS 
The advantage of homography-from-detection 
methods lies in the fact that since they treat each 
image frame separately, as we have shown in Fig. 1, 
estimation can be totally wrong at one particular 
frame, and the following frames won’t be affected at 
all. However, the problem with methods such as 
SURF and FERNs is that, in order to speed up the 
time-consuming matching step in detection, lots of 
approximations are adapted. This makes the 
homography estimation very unstable, resulting in a 
very annoying jitter effect if adopted in AR 
applications, i.e. the augmented object appears to be 
shaking in the scene. In our experiments, even if the 
camera is fixed, the estimated camera position and 
orientation could have very large variance. 

Fig. 2. Homography-from-tracking algorithm framework. 
 



In a different approach, homography-from-tracking 
methods, such as ESM and KLT, compare the 
current frame with the previous one in order to track 
the change. Although they benefit from the relatively 
higher tracking speed that improves their frame rate, 
one critical problem of this group of methods is that 
every tracker suffers from the drifting effect, i.e. the 
updated position of the tracked point actually differs 
to some extent from its true new position, and will 
thus eventually fail. The drifting effect will lead to 
large error in homography estimation, since these 
drifting errors usually do not follow Gaussian 
distribution and shall be seen as systematic errors 
that are changing dynamically. Also, the greater the 
number of points failing to be tracked, the larger the 
variance that the estimated camera pose could have. 
Thus the augmented objects could be in a wrong 
position and shaking at the same time. 
Our new framework (Fig. 3) integrates the 
homography-from-detection and homography-from-
tracking frameworks, utilizing their strong points and 
circumventing their short-comings. In general, our 
framework starts by the original homography-from-
detection framework. Once the marker image is 
detected along with a rough estimation of the 
homography, we immediately move into a coarse-to-
fine framework. Only when the track is somehow lost 
will this procedure be repeated. Within our new 
framework, and firstly via the original tracking 
algorithm (KLT), a coarse homography could be 
found. Then, it would be refined by a global 
optimization algorithm (ESM). Finally the refined 
homography would be used to correct the positions 
of the set of points to be tracked in the next frame, 
which is inspired by our following analysis of the 
cause of the drifting effect. 
 
Drifting Effect Analysis 
After analyzing the drifting effect in homography-
from-tracking methods, we found that it is actually an 
error accumulation issue. During the tracking 
between every two consecutive frames, the error 
introduced by any tracking algorithm is accumulated. 
After a while, this accumulation could directly lead to 
the tracking of a wrong local target or even to the 
failure of the tracker. After realizing this, one 
pertinent question to ask is: is there any way to 

correct the error before the next tracking is actually 
performed? It was found that this is possible, which 
led to the design of our proposed framework. To gain 
more understanding of the cause of the drifting effect, 
the detailed error analysis is shown, as follows. 
Firstly, the error source of any tracking algorithm, 
such as KLT, can be seen as composed by the 
following terms: 

 (1) 

where  newx  is the updated position estimated by KLT,  

oldx  is the true original position, new old Δx x x  is 

the true displacement, d  is the systematic drifting 

error, and g  is the rest of the error, which is 

assumed to follow some Gaussian distribution. Here, 
Δx   is caused by physical movement between the 

camera and the scene, g  is mainly caused by 

camera CCD sensor noise, and d  is usually caused 

by the tracking algorithm and other complicated 
reasons, such as the fact that KLT will be affected a 
lot when the camera is moving too fast, which leads 
to motion blur and thus violates KLT’s underlying 
assumptions. 
The second step of homography-from-tracking 

methods applies RANSAC to estimate coarseH  from 

the array of tracked points { }newx  and their 

corresponding points on marker image. However, 
even though RANSAC can eliminate a lot of outliers 

if the absolute value of error | |d g   exceeds 

some threshold, and further, can eliminate the 

Gaussian error g  by a final least-square estimation 

on the outlier-free subset of correspondent points, 
there still remains a part of systematic drifting error 

d  not handled and thus propagated into coarseH . In 

the homography-from-tracking framework, neither d   

nor g  are corrected during the update step, so 

these errors are accumulated, which can cause a 
large drift even after a few frames of tracking. 
 
Error Correction by Global Constraints 

One natural way to reduce the effect of d  is to 

apply the global appearance constraint, as shown in 
Fig. 3, which essentially means that the original 

Fig. 3. KEG algorithm framework. 
 



marker image should look the same as the image 
rectified from the current frame by estimated 
homography H. Before this constraint, all of the 

information the KLT tracker used is local, while d  is 

systematic, therefore a global optimization based on 
the whole marker image will theoretically eliminate 

all the systematic error and coarseH  can serve as a 

good optimization starting point. 
After the drifting error is eliminated when estimating 

the refined homography refinedH , we can easily 

correct tracking errors and update keypoint positions 
to be filled into the next tracking iteration by the 
homography mapping: 

 (2) 

where refx  is a keypoint’s position on the original 

marker image; we refer to this as applying the global 
geometric constraint (for it relies on the prior 
knowledge that all keypoints lie in the same plane). 

Since the estimated refinedH  is already theoretically 

error-free, updating using the above equation (2) 
instead of equation (1) prevents tracking error from 
propagating into the tracking of the next frame, and 
thus increases the tracking stability. 
Besides the improvement in accuracy, our algorithm 
also enjoys an increase in tracking speed. Because 
we have a global refinement step, we do not require 
the local tracking algorithm such as KLT to be very 
accurate by reducing the number of iterations of KLT 

algorithms that result in larger error | |d g  . Since 

the direct result of KLT is just a coarse homography 
serving as an ESM optimization starting point, a 
certain amount of error can be tolerated and will be 
theoretically eliminated after global refinement (ESM). 
Similarly, since the time complexity of a local tracking 
algorithm such as KLT is usually positively correlated 
to the number of points to be tracked, we can 
decrease the number of keypoints to be tracked. 
We refer to our method as the KEG (KLT Enhanced 
by Global constraints) tracker, and the complete 

algorithm framework is described in Algorithm 1. It’s 
worth noting that KLT, ESM, and RANSAC, as well 
as the initial detection method (AprilTag/SURF), are 
replaceable components in our approach. 
This makes our method very flexible and easy to be 
extended by new algorithms (as long as they serve 
the same purpose). We will offer detailed 
comparisons in next section showing that, even 
though our framework involves more steps, its 
performance in accuracy, stability, and speed is 
increased as compared to the state-of-the-art 
algorithms. 
 

EXPERIMENTAL RESULTS 
In order to validate our method and compare it to 
state-of-the-art algorithms, we did several 
experiments on both real-world and synthesized 
video sequences (in which we knew the ground-truth 
of the camera pose). Experiments were all 
conducted on a desktop computer with an eight-core 
2.8 GHz Intel Core i7 CPU and similar performances  
were achieve on lower end computers. Also, all of 
the video sequences have a frame size of 640x480, 

which is the commonly adopted size of commercial 
webcams. 
In all of the test cases to be shown in the following, 
for the purpose of showing the necessity of the three 
core components in KEG—local tracker (K-step), 
global refinement (E-step), and error correction (G-
step) —and proving its superiority to state-of-the-art 
methods, we ran 7 different algorithms over those 
test cases: 
1. KEG with AprilTag as initialization method 

(referred to as A+KEG). 
2. No global appearance constraints applied; 

others are the same as 1 (A+K G). 
3. No global geometric constraints applied; others 

are the same as 1 (A+KE). 
4. No global constraints applied, representing 

homography-from-tracking method (A+K). 

Algorithm 1: KEG algorithm framework.

1. Detect N keypoints { }refx  on marker image T. 

2. Apply Fiducial Marker method (AprilTag) or Homography-from-detection algorithm (SIFT), try to find the mark-

er image and its corresponding homography refinedH . If found, go to step 6; otherwise, re-do step 2. 

3. Take a new incoming frame newI , the last frame oldI , and the old keypoints’ positions { }oldx , perform local 

tracking (KLT) and output new keypoints’ positions { }newx . 

4. Perform robust estimation (RANSAC) on correspondent keypoint array { }refx  and { }newx , then output coarseH . 

5. Apply global appearance constraint by ESM and output refinedH . 

6. Validate refinedH  by similarity (zero-mean normalized cross-correlation, equation  (3)) threshold. If valid, refinedH

can be output for homography decomposition; otherwise, meaning loss-of-track, go to step 2. 

7. Update positions of keypoints { }newx  by equation (2). 

8. Replace oldI  with newI . Replace { }oldx  with { }newx . Go to step 3. 



5. AprilTag, representing fiducial marker-based 
method (A). 

6. AprilTag with global appearance constraints 
applied (A+ E). 

7. FERNs, representing homography-from-
detection method (FERNs). 

For the homography-from-detection component, we 
used our own C++ implementation of AprilTag, which 
originates from the java implementation by April Lab  
at the University of Michigan4. For comparison with 
state-of-the-art homography-from-detection methods, 
we adopted the well-known and widely used Open-
source Computer Vision (OpenCV) library implemen-
tation of the FERNs method. For the ESM method, 
we used the binary library provided by INRIA at 
http://esm.gforge.inria.fr/ESMdownloads.html. 
We also looked at different performance metrics so 
as to have a comprehensive understanding of the 
performance of these algorithms: 
Duration: The time to process each frame, reflecting 
the speed of the algorithm. This metric is crucial for 
real-time applications. 
NCC: The zero-mean normalized cross-correlation 
between the marker image I1 and the rectified image 

I2 by refinedH , which can be calculated by: 

 
(3) 

where n is the total number of pixels of image I1 or I2, 

and mi and i  are the mean value and standard 

deviation of intensity of image I1. Obviously, if I1 and 
I2 are exactly the same, their NCC index should be 
one, and the larger their difference, the smaller the 
NCC index. This means NCC is a good similarity 
index. This index is also used in KEG to determine 
whether it loses track or not by a simple threshold of 
0.5; if at any frame the NCC index is smaller than 0.5, 
it is regarded as a loss-of-track frame. 
LOT: The total number of loss-of-track frames. This 
metric represents a registration algorithm’s stability 
to some extent. 
T-RMS/R-RMS: The root mean square error 
between estimated camera position/orientation and 
ground truth. This metric represents the absolute 
accuracy of a registration algorithm, and is 
calculated by: 

 

where  is the total number of frames of a test case, 

Ti and îT  are the i-th frame’s ground truth and 

estimated position vector of dimension 3x1, and Ei 

and ˆ
iE  are the i-th frame’s ground truth and 

estimated Euler angle vector of dimension 3x1, 
respectively. Since these two indices require ground 
truth data, they are only examined for synthesized 
test cases. 

UOT: We also propose this new index for estimating 
the extent of jitter effect of a registration algorithm, 
i.e. the unsmoothness-of-tracking, taking advantage 
of the NCC index by 

 

where NCCi is the NCC index of the i-th frame, which 
essentially means that UOT index is the standard 
deviation of the difference between consecutive NCC 
indices. In MATLAB, this can be simply calculated by 
“std(diff(ncc)).” A stable registration algorithm should 
give a UOT index value as small as possible. 
In all of the test cases, our marker image is 
composed of a 16 bits AprilTag of ID equal to zero 
and a natural image, the logo of University of 
Michigan that is rich in features. The synthesized test 
case is rendered in OpenGL, using our marker 
image and a static real-world image as background. 
And the real-world test case is recorded using a 
Logitech webcam. 
Experiments shows that the average duration per 
frame of A+KEG is about 40 milliseconds, which is 
even faster than AprilTag (60~70 milliseconds). 
While other algorithms have very unstable 
processing time and are mostly slower than A+KEG, 
the only exception is A+KG, which is as expected 
since it has no global refinement step. These results 
prove that the KEG method does fit for real-time 
applications with process speed of 20 frames-per-
second or faster. 
Fig. 4 (a) shows that in most of the time, the NCC 
curve of A+KEG is the upper bound for the other 
algorithms, especially performing better than the 
state-of-the-art algorithm, FERNs. This means KEG 
tracker has the highest quality of tracking. 
Fig. 4 (b) and (c) demonstrate that the A+KEG 
method has fewer loss-of-track frames, showing its 
ability to track longer, and lower UOT index, showing 
its smoothness in tracking—an important feature if 
applied in AR. Also A+KEG is more accurate, by 
giving less T-RMS/R-RMS errors in Fig. 4 (d) and (e). 
Notice that here we assume the radius of our 
synthesized marker is 20 cm (which was the real 
size when it was printed out on an A4 sheet of paper 
in the real-world test cases). In this configuration, the 
KEG tracker’s maximum working distance can be as 
far as 3 meters, and its maximum working Euler 
angle can be about 85 degree offset from the marker 
image’s normal direction. If an even larger working 
distance is desirable, a higher resolution camera and 
bigger marker can be adopted. 
 



APPLICATIONS 
As noted in the Introduction, this algorithm has 
several potential applications in many different areas. 
One example application we implemented is context-
aware computing. Indoor context-aware computing 
has been studied in AEC for its ability to speed up 
information delivery in many aspects, including 
construction site inspection/monitoring and facility 
management1,13. Prior approaches for indoor 
ubiquitous tracking utilize an inertial measurement 
device, which suffers from its drifting effect. By Akula 
et al.1, a context-aware computing system integrated 
with both GPS and inertial measurement device is 
developed, requiring human intelligence to recognize 
certain predefined locations to manually correct the 
drifting error caused by the IMU.  
In our application, manual error correction was 
naturally replaced by automated correction using the 
A+KEG method, as shown in Fig. 5 left. The green 
text shows that the algorithm successfully 
recognizes different locations by composing a 
natural photo (UM logo in this case) with different 
AprilTags. Once the inspector is within the effective 
range of the KEG marker image, the marker is 
automatically detected and then the inspector’s pose 
relative to the marker is continuously estimated. 

Similar to Akula et al.’s method, both the location 
and orientation of these predefined markers in the 
global coordinate system are known and stored in a 
database. Therefore the inspector’s pose in the 
global coordinate system can be determined, as well. 
Benefiting from the KEG tracker, this application can 
provide automatic regional drifting error correction 
instead of manual point correction. This application 
can thus further facilitate information delivery on 
construction sites or in indoor building environments. 
Another interesting application lies in tabletop 
augmented reality. Fig. 5 right shows a desktop 
environment AR showcase of a 3D building design. 
Since the KEG tracker has the ability to quickly 
detect and accurately maintain the tracking of a 
marker image without requiring that the marker 
image be fully in sight (as required by ARToolkit), it 
can easily be adapted into tabletop collaborative AR 
applications12 to support better interactive design 
demonstration or visual simulation for construction 
planning. Note  that  our  KEG  algorithm  is  open-
source, so the C++ codes and demonstration videos  
for the above two applications could be found at our  
lab’s webpage (http://pathfinder.engin.umich.edu/). 

(a) Real-world case’s NCC curve. (b) Real-world case’s UOT index. 

(c) Real-world case’s LOT index. (d) Synthesized case’s T-RMS index. (e) Synthesized case’s R-RMS index. 
Fig. 4. Experiment results of comparison between different algorithms. 

 



CONCLUSIONS 
After studying the two different types of natural 
marker-based registration algorithms and analyzing 
the cause of the drifting and jitter effects in both 
homography-from-tracking and homography-from-
detection methods, a new natural marker-based 
registration algorithm, KEG tracker, is proposed, 
combining the advantages of those two, and 
circumventing their shortcomings. In theoretical 
analysis, we found that the drifting effect is an error 
that occurs because of an accumulation problem. 
We solved the problem by applying two global 
constraints: a geometric and appearance constraint. 
Experiments on both synthesized and real-world 
cases prove that the KEG method is fast enough for 
real-time applications, and also more accurate and 
stable than state-of-the-art algorithms such as 
FERNs and AprilTag, even when the marker image is  
partially occluded or viewed from very long distance. 
We also explored potential applications of the new 
tracker, such as context-aware computing, for 
replacing manually drifting error correction, and 
augmented reality for tabletop 3D visual simulation. 
In the future, one direction for further research is 
applying more object recognition techniques so that, 
without the need of composing a fiducial marker 
(AprilTag), our method could more naturally support 
multiple marker recognition and tracking. Extending 
our method to a 3D environment, such that no planar 
structure assumption is needed, could also be a very 
interesting research direction. In addition, specific 
AEC applications of the tracker can be explored, 
such as pose estimation for construction equipment. 
 
References  
1. Akula, M., Dong, S., Kamat, V., Ojeda, L., Borrell, A., 

and Borenstein, J., "Integration of infrastructure 
based positioning systems and inertial navigation for 
ubiquitous context-aware engineering applications," 
Advanced Engineering Informatics, 2011. 

2. Lepetit, V., and Fua, P., "Monocular Model-Based 
3D Tracking of Rigid Objects," Foundations and 
Trends in Computer Graphics and Vision, 2005. 

3. Kato, H., and Billinghurst, M., "Marker tracking and 
hmd calibration for a video-based augmented reality 
conferencing system," in Proceedings of 2nd IEEE 
and ACM International Workshop on Augmented 
Reality, 1999. 

4. Olson, E., "AprilTag: A robust and flexible visual 
fiducial system," in Proceedings of the International 
Conference on Robotics and Automation, 2011. 

5. Lowe, D., "Distinctive image features from scale-
invariant keypoints," International journal of 
computer vision, Vol. 60(2), pp. 91-110, 2004. 

6. Ozuysal, M., Fua, P., and Lepetit, V., "Fast keypoint 
recognition in ten lines of code," in Proceedings of 
IEEE Conference on Computer Vision and Pattern 
Recognition, 2007. 

7. Lucas, B., and Kanade, T., "An Iterative Image 
Registration Technique with an Application to 
Stereo Vision," in Proceedings of the 7th 
International Joint Conference on Artificial 
Intelligence, 1981. 

8. Benhimane, S., and Malis, E., "Real-time image-
based tracking of planes using efficient second-
order minimization," in Proceedings of International 
Conference on Intelligent Robots and Systems, 
2004. 

9. Hartley, R., and Zisserman, A., Multiple view 
geometry in computer vision, Cambridge University 
Press, 2000. 

10. Fischler, M., and Bolles, R., "Random sample 
consensus: a paradigm for model fitting with 
applications to image analysis and automated 
cartography," Communications of the ACM, Vol. 
24(6), pp. 381-395, 1981. 

11. Simon, G., Fitzgibbon, A., and Zisserman, A., 
"Markerless tracking using planar structures in the 
scene," in Proceedings of IEEE and ACM 
International Symposium on Augmented Reality, 
2000. 

12. Dong, S., and Kamat, V., "Collaborative 
Visualization of Simulated Processes Using 
Tabletop Fiducial Augmented Reality," in 
Proceedings of Winter Simulation Conference, 2011. 

13. Behzadan, A., Aziz, Z., Anumba, C., and Kamat, V., 
"Ubiquitous location tracking for context-specific 
information delivery on construction sites," 
Automation in Construction, Vol. 17(6), pp. 737-748, 
2008. 

Fig. 5. A+KEG in context-aware computing (left) and table taletop AR (right). 
 


