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Abstract 

Construction progress monitoring has been recognized as one of the key elements that lead to 
the success of a construction project. The first requirement for effective progress monitoring 
is the collection and analysis of construction progress information. Through the use of image 
retrieval, progress information about structural components can be derived from the 
construction site image. In this paper, the method of color model-based, concrete image 
retrieval is proposed for utilization in construction progress monitoring. For effective 
concrete image retrieval, a comparison of concrete color models in four invariant color spaces, 
such as normalized rgb, HSI, YCbCr, and CIELUV, is conducted. Then, the best color 
configuration and color space to model the inherent concrete color and to efficiently 
discriminate between concrete and other objects (or “non-concrete” objects) are determined, 
using Mahalanobis distance and performance measures. Experimental results show that L-U 
color configuration in CIELUV color space yield the optimal retrieving performance, and 
subsequently, the highest retrieval rate of concrete color. 

KEYWORDS: color invariant, color segmentation, image processing, Mahalanobis 
distance, object recognition. 

INTRODUCTION 

In the construction industry, construction progress monitoring has been recognized as one of 
the key elements that lead to the success of a construction project. By performing 
construction progress monitoring, corrective measures and other appropriate actions can be 
taken in a timely manner, thereby enabling the actual performance to be as close as possible 
to the desired outcome, even if the construction performance deviates significantly from the 
original plan. However, although the progress monitoring process, which includes collecting 
and analyzing project progress information during the construction phase, is an important 
task for construction management, the construction industry currently relies heavily on 
manual methods. Site managers still spend a significant amount of time measuring, recording, 
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analyzing, and comparing progress against the project schedule (Trucco and Kaka, 2004). 
This information is difficult to use to control project progress in a timely manner and is 
inadequate for effective construction progress monitoring (Bosche and Haas, 2007; Chae and 
Kano, 2007; Golparvar-Fard and Peña-Mora, 2007). 

In recent years, advanced methods based on computer vision techniques that replace manual 
methods of analysis of the acquired images have been studied (e.g., Wu and Kim, 2004; 
Lukins and Trucco, 2007). These research activities illustrate the possibility of automated 
progress monitoring and the applicability of computer vision techniques to automated 
detection of objects on a construction site. However, shape feature-based image retrieval 
encounters some problems when the environment is complex because it is strongly affected 
by noise (Schiewe, 2002). Color model-based image retrieval is effective when the object has 
a specific color. Most types of structural components that would be tracked for the purposes 
of measuring progress on a construction project (e.g., steel, concrete, brick, and wood) have 
unique, easily identifiable colors. Therefore, the structural component can be effectively 
detected by defining the unique color model of the specific structural component. In order to 
define the unique color model of the object, it is important to identify the optimal color space 
that represents distinct color features of the object that are not affected by the outdoor 
environment. 

The goal of this paper is to propose an effective color model-based, structural components 
retrieval method for effective progress monitoring. For effective concrete image retrieval, a 
comparison of concrete color models in four invariant color spaces, such as Normalized rgb, 
HSI, YCbCr, and CIELUV, is completed. Then, the best color configuration and color space 
to model the inherent concrete color that would efficiently discriminate between concrete and 
other objects (or “non-concrete” objects) is determined, using Mahalanobis distance and 
performance measures. Finally, the performance of proposed method has been validated, 
aiming at the concrete image acquired from the construction site, and the study’s results are 
discussed. 

IMAGE RETRIEVAL USING COLOR INVARIANCE 

Color has been recognized as a salient feature for object recognition, particularly given that 
color is an effective cue for differentiating one object from another (Wada et al., 2005). The 
consistency of a single-colored object is maintained within a bounded volume in a given 
color space under conditions of fixed illumination (Cho et al., 2001). However, the values of 
colors in an RGB space, the most prevalent choice for computer graphics, are deteriorated by 
changes in illumination of the type often observed in outdoor environments (Bascle et al., 
2006). Hence, effects caused by changes in illumination of color images acquired in an 
outdoor environment must be effectively handled, before color-based object recognition can 
be used with any degree of confidence. Moreover, since the most construction activities are 
performed in outdoor environments, the concrete members tend to be more exposed to light. 
Besides basic RGB color space, there are several other alternative color spaces, such as 
normalized rgb, perceptual color space (HSI), orthogonal color space (YCbCr), and 
perceptually uniform color space (CIELUV), which are developed for the purposes of 
illumination changes (Wesolkowski, 1999; Tsai, 2006; Kakamanu et al., 2007; Tian et al., 
2009). 
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Normalized rgb Color Space 

To reduce the sensitivity of the distribution to the light changes, Normalized rgb color space 
is proposed by normalizing the three components in RGB color space. It has been observed 
that under certain assumptions, the differences in some object-color pixels due to lighting 
conditions and due to ethnicity can be greatly reduced in Normalized rgb color space. Given 
the above advantages, this has been a popular choice in color model-based image retrieval. 
Three components in Normalized rgb range from 0 to 1. Normalized rgb is easily obtained 
from the RGB values by a simple normalization procedure (Moreno et al., 2001): 

𝑟𝑟 =  
𝑅𝑅

√𝑅𝑅2 + 𝐺𝐺2 + 𝐵𝐵2
,     𝑔𝑔 =  

𝐺𝐺
√𝑅𝑅2 + 𝐺𝐺2 + 𝐵𝐵2

,     𝑏𝑏 =  
𝐵𝐵

√𝑅𝑅2 + 𝐺𝐺2 + 𝐵𝐵2
 

HSI Color Space 

The HSI color space consists of three components: hue (H), saturation (S), and intensity (I). 
Those are the perceptual features of color that cannot be described directly by RGB color 
space. The conversion of RGB to HSI is invariant to surface orientations and ambient light 
relative to the light source, and therefore, this makes a very good choice for color model-
based image retrieval (Kakamanu et al., 2007). The RGB variables take values of 0 to 255, 
and the result is scaled to a range of 0 to 360 for H, and 0 to 1 for S and I. The formulae for 
hue, saturation, and intensity are (Cheng et al., 2001): 

𝐻𝐻 = arctan�
√3(𝐺𝐺 − 𝐵𝐵)

(𝑅𝑅 − 𝐺𝐺) + (𝑅𝑅 − 𝐵𝐵)
� ,     𝑆𝑆 = 1 −

min(𝑅𝑅,𝐺𝐺,𝐵𝐵)
𝐼𝐼

,     𝐼𝐼 =  
(𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵)

3
 

YCbCr Color Space 

The YCbCr color space is one of the orthogonal color spaces. Since it clearly separates the 
luminance and chrominance components, it is a favorable choice for color model-based 
image retrieval (Kakamanu et al., 2007). The YCbCr color space consists of Luminance Y, 
Blue Chrominance Cb, and Red Chrominance Cr. The RGB variables take values of 0 to 255, 
and the result is scaled to a range of 16 to 235 for Y, and 16 to 240 for Cb and Cr. The YCbCr 
color space is formulated as (Shih and Cheng, 2005): 

�
𝑌𝑌
𝐶𝐶𝑏𝑏
𝐶𝐶𝑟𝑟
� = �

65.481 128.553 24.966
−39.797 −74.203 112

112 −93.786 −18.214
��

𝑅𝑅
𝐺𝐺
𝐵𝐵
� + �

16
128
128

� 

CIELUV Color Space 

CIELUV color space is one of the perceptually uniform color spaces. Perceptual uniformity 
represents how two colors differ in appearance to a human observer (Kakamanu et al., 2007). 
CIELUV color space consists of three components: L, U, and V. The L parameter 
corresponds roughly to luminance or brightness. The U parameter primarily mimics shifts 
from green to red (with increasing U), and the V parameter correlates with blue and purple 
colors. The L component has a range of 0 to 100, the U component has a range of -134 to 220, 
and the V component, from -140 to 122. CIELUV is defined as (Cheng et al, 2001): 

�
𝑋𝑋
𝑌𝑌
𝑍𝑍
� = �

0.607 0.174 0.200
0.299 0.587 0.114
0.000 0.066 1.116

��
𝑅𝑅
𝐺𝐺
𝐵𝐵
� ,     𝐿𝐿 = 116�

𝑌𝑌
𝑌𝑌0

3
− 16,     𝑈𝑈 = 13𝐿𝐿(𝑢𝑢′ − 𝑢𝑢0),     𝑉𝑉 = 13𝐿𝐿(𝑣𝑣′ − 𝑣𝑣0) 
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When 𝑌𝑌/𝑌𝑌0 > 0.01, 𝑌𝑌0, u0, and 𝑣𝑣0 are the values for the standard white, and 

𝑢𝑢′ =
4𝑋𝑋

𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍
,      𝑣𝑣′ =

6𝑌𝑌
𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍

 

SELECTION OF AN OPTIMIZED COLOR CONFIGURATION AND 
COLOR SPACES FOR CONCRETE IMAGE RETRIEVAL 

This section assesses the performance of color model-based, concrete image retrieval using 
color segmentation in the four invariant color spaces (Normalized rgb, HSI, YCbCr, and 
CIELUV) explained in the previous section. 

Concrete Color Model and Color Segmentation 

Color segmentation can basically be performed using appropriate object color thresholds 
where object color is well modeled (Hjelmas and Low, 2001). Therefore, to determine the 
best color space in which to model inherent concrete color, the 990 concrete color regions of 
size 50*50 pixels were extracted, each with different illuminations, and this resulted in 
2,457,000 concrete colored pixels. Then, those pixels values were converted to four invariant 
color spaces. For each color space, three color configurations by means of a combination of 
two color component were defined. In the CIELUV color space example, the possible color 
configurations are L-U, U-V, and L-V. Using three color configurations in each of the four 
color spaces, 12 concrete color distributions were made and compared. On the basis of the 
distribution, the generalized distance proposed by Mahalanobis (1936) is used to define the 
concrete color model in each of the 12 concrete color distributions. The Mahalanobis distance 
has already proved its strength in object detection by considering the distribution of color 
values of the object and defining their color models (Majoor, 2000; Tomaz et al., 2003). In 
this context, the pixel color from an input image can be compared with the concrete color 
model by computing the Mahalanobis distance, since this distance estimates how closely the 
pixel color resembles the concrete color of the model (Hjelmas and Low, 2001). 

Figure 1 shows an example of the variation in color segmentation that result with different 
Mahalanobis distances in the L-U color configuration. 

    
 (a)                                 (b)                                 (c)                                 (d) 

Figure 1: An Example of Color Segmentation Results with Different Mahalanobis Distances (D) in the 
L-U Color Configuration (a) Concrete Image, (b) D = 1, (c) D = 5, (d) D = 15 
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The lower Mahalanobis distance results in an under-segmented image, while the higher 
Mahalanobis distance results in an over-segmented image. Therefore, analysis of the 
goodness of fit of the concrete distribution to the model for each of the 12 concrete color 
distributions, by varying the Mahalanobis distance, is required to determine the best color 
space to model the inherent concrete color. 

Comparative Evaluation Results 

The experimental tests were carried out to evaluate the concrete retrieval performance of the 
12 color configurations in four color spaces, and the results are described in this section. In 
this study, to describe the concrete retrieval performance, the probability of error was used, as 
proposed by Habili et al. (2004). The probability of error as: 

𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑃𝑃𝑀𝑀(𝜃𝜃)𝑃𝑃(𝑤𝑤𝑤𝑤) + 𝑃𝑃𝐹𝐹(𝜃𝜃)𝑃𝑃(𝑤𝑤𝑤𝑤) 

where 𝜃𝜃 is a threshold value, 𝑃𝑃𝑀𝑀(𝜃𝜃) is the probability of miss (concrete pixels detected as non-
concrete pixels), 𝑃𝑃𝐹𝐹(𝜃𝜃)  is the probability of false alarm (non-concrete pixels detected as 
concrete pixels), each of 𝑃𝑃(𝑤𝑤𝑤𝑤) and 𝑃𝑃(𝑤𝑤𝑤𝑤) is the probabilities of the concrete and non-concrete 
classes in the image, and 𝑃𝑃(𝑤𝑤𝑤𝑤) + 𝑃𝑃(𝑤𝑤𝑤𝑤) = 1. 

If 𝑃𝑃(𝑤𝑤𝑤𝑤) is unknown, the minimax test proposed by Fukunaga (1990) can be adopted to 
extract the threshold value. Since 𝑃𝑃(𝑤𝑤𝑤𝑤) + 𝑃𝑃(𝑤𝑤𝑤𝑤) = 1, the previous equation can be reduced as: 

𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = (𝑃𝑃𝑀𝑀(𝜃𝜃) − 𝑃𝑃𝐹𝐹(𝜃𝜃))𝑃𝑃(𝑤𝑤𝑤𝑤) + 𝑃𝑃𝐹𝐹(𝜃𝜃) 

To minimize 𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 , threshold value should be set to make the 𝑃𝑃𝑀𝑀(𝜃𝜃) = 𝑃𝑃𝐹𝐹(𝜃𝜃), regardless of 
𝑃𝑃(𝑤𝑤𝑤𝑤). Figure 2 shows an example of the probability of miss and false alarm of color-model 
based concrete image retrieval using the Mahalanobis distance in the L-U color configuration. 
The horizontal axis indicates the Mahalanobis distance used, and the vertical axis represents 
the probability of miss and false alarm. As shown in Figure 2, the probability of miss 
decreases along with the Mahalanobis distance, while the probability of false alarm increases. 
As described above, the threshold value was determined as 4.0206 when the two curves 
intersect. 

 

Figure 2: An Example of Probability of Miss and False Alarm in the L-U Color Configuration 
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Figure 3 illustrates the images that resulted from color segmentation for Figure 1(a) with 
different color configurations in four color spaces, when the probability of miss and false 
alarm is same. From the first column to the second column, respectively, the results from 12 
color configurations in Normalized rgb, HSI, YCbCr, CIELUV color spaces are shown. 
Comparing the retrieved results, it is observed that several color configurations fail to 
effectively distinguish concrete from non-concrete objects, as indicated in Figure 3. 

    

    

    
(a)                                 (b)                                 (c)                                 (d) 

Figure 3: Results of Concrete Image Retrieval (a) r-g, g-b, r-b Color Configurations in Normalized rgb 
Color Space, (b) H-S, S-I, H-I Color Configurations in HSI Color Space, (c) Y-Cb, Cb-Cr, Y-Cr Color 
Configurations in YCbCr Color Space, (d) L-U, U-V, L-V Color Configurations in CIELUV Color Space 

Table 1 lists the statistical verification results to highlight the most optimal color 
configuration and color space for concrete image retrieval. The color configurations are 
arranged in descending order of probability of miss and false alarm. The best performance 
(lowest probability of miss and false alarm) is demonstrated by the L-U color configuration in 
CIELUV color space, which has a probability of miss and false alarm of 0.1686. In other 
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words, the color configuration of L-U in CIELUV color space that would efficiently 
discriminate between concrete and other objects (or “non-concrete” objects) and produce the 
best retrieval results and, in this case, the Mahalanobis distance, is found to be 4.0206. The 
resulting image is shown in the first image in the first column in Figure 3. 

Table 1: Probability of Miss and False Alarm and Mahalanobis Distances Produced on 12 Color 
Configurations in Four Color Spaces with Lowest Probability of Miss and False Alarm 

Rank Color Space Color Configuration Perror Mahalanobis Distance 
1 CIELUV L-U 0.1686 4.0206 
2 YCbCr Y-Cr 0.1718 4.1750 
3 Normalized rgb r-g 0.1755 2.7220 
4 Normalized rgb r-b 0.1756 2.8225 
5 Normalized rgb g-b 0.1779 2.8005 
6 HSI S-I 0.1838 2.5834 
7 CIELUV L-V 0.1936 3.7715 
8 YCbCr Cb-Cr 0.2053 3.0010 
9 YCbCr Y-Cb 0.2067 3.7276 
10 CIELUV U-V 0.2110 2.9963 
11 HSI H-S 0.2398 2.0543 
12 HSI H-I 0.3052 2.1025 

CONCLUSIONS 

Progress monitoring, one of the key factors that might lead to the success of a construction 
project, can be conducted effectively using computer vision technology through structural 
components retrieval. In this study, an effective color model-based, structural components 
retrieval method for effective progress monitoring has been presented. A good color model 
must be able to discriminate between concrete and non-concrete pixels and to perform well 
under different illumination conditions in outdoor environments. For this reason, 12 concrete 
color configurations and the four color invariant color spaces were chosen for comparison 
and evaluation of the performance of the proposed method. The proven results from these 
experiments show that the proposed method is valid for concrete image retrieval, and L-U 
color configuration in CIELUV color space yield the best retrieving performance due to its 
lowest probability of miss and false alarm. 

In future research, the proposed method herein will be expanded to allow for the retrieval of a 
number of types of structural materials, including steel, masonry, and timber, leading to a 
practical implementation of the method. Based on the retrieved information of structural 
components, it is expected that it can contribute to automated and effective construction 
progress monitoring. In addition, it can be utilized in the field of construction automation, 
such as quality control, path planning of tower cranes, and obstacle avoidance of heavy 
equipment at construction sites. 
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