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1 Introduction.

Most of the risks in underground construction are either
directly or indirectly related to the main underlying random
variable: the project's geology. This is particularly true for
all the risks associated with the direct construction cost items,
such as excavation and support. Uncertainty in predicting
geologic conditions often leads to postulating worst conditions
and thus to conservatism in design and construction. Research

has shown that the designer and the contractor are very sensitive
to their perception of what the impacts of such risks may be on
their organization (Levitt et al., 1979; Ioannou , 1980, 1984;
Qaddumi, 1981). in particular, designers have adopted the
strategy of "defensive engineering" or "design conservatism", and
contractors have been accused of including large contingencies in
their bids, or of resorting to excessive claims litigation over
"changed conditions".

A reduction in the currently high cost of underground
construction can be achieved by investing in subsurface
exploration programs that provide both the designer and the
contractor with sufficient geologic information during the
preconstruction phase. As of yet, however, the problem of
determining the optimal level of investment in exploration has
not been resolved. This is also the case for the related problem
of determining the configuration of the most effective

exploration program given a particular exploration budget. This

paper describes the development of a decision support system that
can be used for evaluating the merits of different exploration

alternatives. This is accomplished by estimating the effect of

additional information on design and construction decisions and
hence on the total project cost.

2 The Geologic Prediction Model.

Design and construction decisions in tunneling depend on
such parameters as rack type, joint density, faulting, joint
appearance, degree of weathering, and groundwater
characteristics. In defining a set of design-construction
options prior to construction, the variability of these

parameters has to be taken into account. This can be done
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through the geologic prediction model, the output of which is a
probabilistic description of the geologic parameters of

interest.

The underlying model of geologic variability is the

continuous-space, discrete-state Markov process. This model
represents one of the most powerful analytical techniques that
have been used to date for the purposes of geologic prediction
(Krumbein, 1969; Chan, 1981; Ioannou, 1984; Kim, 1984). In
particular, the development of the geologic prediction model is
based on the following assumptions:

It is possible to define a set of geologic parameters which,
for all practical design and construction purposes, provide

a complete description of a project's geologic conditions.
Each of the parameters necessary for the description of
geology is associated with an enumerable (as opposed to

continuous) domain of feasible values. Since any number of
discrete states can be assigned to each parameter, the

decision maker can approximate continuous state parameters

to any degree of accuracy.2

- In the absence of location-specific information linking

certain parameter states with particular locations (along

the alignment of the project) each of the parameters
describing the geology undergoes state transitions (i.e.

changes in value in the direction of the project's axis)
according to the probability laws of a discrete -state,

continuous-space Markov process.

- If strong probabilistic dependencies exist between geologic

parameters, then a natural hierarchy must be used to define

different Markov processes for the dependent parameters.
For example, if the degree of jointing is presumed to be
strongly dependent on rock type, then different processes
must be defined for rock jointing depending on the
prevailing rock type.

- Location -specific observations from additional subsurface
exploration are used to update the individual Markov
processes for each parameter according to Bayes theorem.

The resulting model has been compared against the following

general requirements and has proven to be satisfactory (Chan,
1981; Ioannou, 1984):

2. Some parameters are naturally discrete (for example, "rock
type" can be granite, schist, limestone, etc.) while others are
continuous (for example, "joint density" as measured by RQD can

be anywhere from 0% to 1000). It is common practice, however, to
discretize these parameters (for example, "joint density" may be
classified as "severe " or "not severe" ) a fact that greatly
simplifies the mathematical model.

I
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1. Tunnel profiles generated by the model must be compatible
with general expectations on the actual profile.

2. The model makes full use of all available information be it
general or project-specific.

3. Geologic predictions can be updated as exploration proceeds
and more information is gathered.

4. The prediction and updating processes should be capable of

including subjective judgment when necessary.

5. The model must be complete. All relevant geologic

parameters and the entire ranges of their possible states
must be included. Furthermore, it must be flexible enough
to accommodate parameters whose importance increases
through subsequent exploration.

In its simplest form, and within homogeneous geologic
regions, the model treats each geologic parameter as an
independent random process with a single-step memory. Thus, the
a priori description for each process is based on two parameters:

Pij = probability of entering state j when a transition is made

out of state i, and the so-called transition intensity

coefficients c1. The latter are easier to understand if one

considers that under the Markovian assumption of single-step
memory, the state extents (i.e. . the lengths of tunnel within
which a geologic parameter occupies a particular state i) follow
an exponential distribution with parameter c1. Thus, ci =

average extent of state i.

The transition intensity coefficients and the transition
probabilities for each geologic parameter can be estimated by
either statistical or judgmental procedures. A complete
description of these techniques , as well as a discussion of how
to handle differences in the opinions of several experts, is
beyond the scope" of this paper and can be found elsewhere (Chan,
1981). However, i t must be pointed out that an attractive feature
of this probabilistic method for geologic prediction is that it
can make explicit use of information that is not specific to the
project site. Thus, information about the geology from nearby
locations or from geologic maps can readily be used for
estimating the initial Markov process parameters.

In addition to general information , which basically
describes the geology in the greater vicinity of the project, the
geologic prediction model makes use of location-specific
information. The latter is usually in the form of observations
from exploration programs . Depending on the exploration method
used and the geologic parameter being examined, these
observations may be deterministic in nature ( for example, "the
rock type 500 ft. ahead of the tunnel portal is schist" ) or they
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may lead to probabilistic assessments. In the latter case, one

may use direct encoding of subjective judgment to make a

posterior statement about the parameter state probabilities (for

example, "the rock type 700 ft. away from the tunnel portal is

granite with probability 0.8 or quartzite with probability 0.2")
Alternatively, one can use the likelihood function (reliability
matrix) associated with the method providing the observation to

compute the posterior parameter state probabilities usLig Bayes
theorem and the parameter state probabilities of the Markov
process. The limiting state probabilities of the latter, of
course, serve as the vague prior.

Apart from philosophical issues, the main difference between

the two procedures is that the first requires the use of an

expert geologist every time a new observation is made available,
whereas the second can be automated as a computer routine. In

the process of evaluating future exploration programs, however,
it is necessary to update the parameter state probabilities based

on a large number of simulated observations; thus, the former

approach is practically infeasible. As a result, the geologic
prediction model updates the parameter state profiles and the
interval transition probabilities by applying Bayes theorem to
the corresponding probabilities of the Markov processes (the
prior) using the reliability matrices associated with the

available observations.

3 The Design-Construction Model.

The objective of this model is to transform the updated
probabilistic geologic parameter profiles into a predicted

sequence of design -construction alternatives. This
transformation must reflect:

i. The existing level of geologic uncertainty , which is a
function of the available geologic information.

2. The conservatism (risk aversion) traditionally exhibited by
the engineer and the contractor based on the amount of risk
they have to bear.

To satisfy these requirements the design-construction model
employs the concepts of "ground classes" and the "threshold

probability".

Ground classes have been extensively used in tunneling for

describing the around characteristics pertinent to the design and

construction of underground structures (Einstein et al., 1983;
Chan, 1981; Ioannou, 1984; Kim, 1984; Deere et al., 1969). The

underlying ideas behind this concept are:

1. The ground at a particular location can be adequately

described by a set of geologic parameter states (a

J
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"geologic vector"); the number of parameters and the number

of (discrete ) states for each parameter can be arbitrarily

large, depending on the geology and the desired modelling

accuracy.

2. There exists a finite set of design-construction methods
(excavation and support combinations) CMi (i=1,...,n) of

which at least one (i.e., CMn) is adequate for the

construction of every possible set of geologic conditions

within the extent of the project at hand. These methods

can be arranged according to their cost in such a way that
a more expensive method can be used in all the geologic

conditions for which a less expensive method is adequate.
In other words, the least expensive design-construction
method CMl can always be substituted by CM2,...,CMn,

whereas Ctv`in cannot be substituted by any other method.

3. A ground class GCi (i=l,...,n) is defined as a collection,

or set, of geologic vectors that describe all the possible
geologic conditions for which the adoption of design-
construction method CMi is the most economical

alternative.

It is clear from this definition that ground classes provide

the link between the states of geologic parameters and the
possible design-construction methods that may be possibly
adopted.

Furthermore, it should also be clear that the transformation

from geologic parameter vector profiles to ground class profiles
is quite straightforward. The parameter vector profiles express
the probability that the geologic parameters jointly assume a
particular combination of states along the alignment of the
tunnel. If the parameters are assumed to be independent, then
this is simply the product of the individual parameter state
probabilities. Thus, at each point along the tunnel there exists.

a joint state probability for each vector. The sum of these
probabilities for all the vectors belonging to the same ground
class yields the ground class state probability at that point.
This process can be repeated for all ground class states and all
points to obtain the complete ground class profile. The latter

simply expresses the likelihood that the ground will be in a

particular around class (state) at each point along the tunnel.

The next step involves the transformation of a ground class
probabilistic profile into a sequence of design-construction
methods. This step is necessary in order to predict the impact
of additional exploration on design and construction and the
resulting consequences on project cost. The main problem,
however, is that it is virtually impossible to predict the
decision making behavior of the designer and/or the contractor
under conditions of uncertainty by using a prescriptive model of

162



rational behavior. Describing the geology in probabilistic terms
is not enough; one has to also take into account:

- How the consequences of the geologic risk are shared between
the project participants (owner, designer, contractor); this
primarily depends on the spirit and wording of the design
and construction contracts, as well as on the owner's
reputation for dealing with such matters in the past.

- The relative magnitude of the risk consequences depending on

the type, size and location of the project.

- The designer's and contractor's attitudes towards risk
depending on firm size, reputation, work backlog,
availability of other projects, the desirability of the

project at hand, general economic conditions, market
penetration strategies, etc.

Furthermore, a "prescriptive" model would require that the
owner entity bearing the cost of preconstruction exploration,
should also have the technical capability of predicting design
and construction decisions, which is not usually the case. The

most efficient and realistic method for bypassing these problems
is for the owner to make use of the engineer as a

design-construction expert and adopt a model that "describes"

rather than "prescribes" how designers and contractors make
decisions. The model presented below is based on the findings of
previous research in this area (Qaddumi, 1981; Ioannou, 1980;
1984) and uses the concept of hypothesis testing.

From the definition of ground classes it is apparent that

there is some non-zero probability for any ground class to exist
at any location along the alignment of a project. Using the
ground class numbering convention above, and assuming that n
ground classes (corresponding to n design-construction methods)
have been defined, around class 1 (i.e., GC1) represents the most

favorable geologic conditions that may be encoun tered, whereas
ground class n (i.e., GCn) represents the most adverse

conditions. As a result, if a particular design-construction

method CMi is chosen for a certain segment of a project, there is

some finite probability that this method may in fact prove to be
inadequate. The only exception to this rule is the most

conservative and hence most expensive design-construction method

CMn. Since the latter cannot always be specified for the whole

length of the work, the choice of design-construction methods can
be considered as a typical example of a "calculated risk".

To this effect, the designer (acting as the owner's expert

representative) sets up the null hypothesis that method i is
indeed adequate. The alternative hypothesis, of course, is that
method is inadequate and that a more conservative method has to
be used:
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Null Hypothesis HO: Method i is adequate.

Alternate Hypothesis H1: Method i is inadequate.

The typical decision rule used in hypothesis testing is the
following:

Decision Rule: Reject the null hypothesis in favor of the
alternate if, based on the information available (i.e., the
observations provided from a subsurface exploration program), the
probability of making a Type I Error is more than "alpha", "the
level of significance".

In this case, however, making a Type I Error merely implies
excessive conservatism, because rejecting the null hypothesis
automatically means that a more conservative method will be
considered. Making a Type II Error is much more serious, because

it defeats safety by accepting the null hypothesis that method i
is adequate when in reality a more conservative method should be
used. The probability of a Type II Error is commonly known as
"beta" = the "threshold probability".

As a result, the above decision rule should be modified to
reflect the importance of the Type II Error:

Decision Rule: "At any point along the alignment of the

tunnel, use the least conservative method whose probability of
being inadequate, based on the available information, is less
than the acceptable threshold probability."

From an operational point of view, the application of the
threshold probability rule can be best illustrated using the

example ground class cumulative profile in Figure 1. Each curve

in this figure corresponds to a particular ground class i and
represents the probability that the true ground class is at least
as favorable as class i. For example, at location to there is a

0.88 probability that the true ground conditions are at least as
favorable as ground class 2; this simply equals the sum of the
state probabilities for classes 1 and 2 at that location. By
definition, this figure also gives the probabilities that CMi

(i=1,2,3) are adequate; for example, the probability that CM2 is

adequate at location tC, is also 0.88. The complement of the

cumulative profile gives the probability that CMi (i=1,2,3) is

inadequate. If a horizontal line is drawn below the top of the
cumulative profile, at a distance equal to the threshold
probability, one immediately gets the least conservative
acceptable sequence of design-construction methods as defined by

the the points of intersection of the threshold probability line
and the ground class curves. This sequence represents the
expected design and construction decisions as a function of the
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threshold probability.

The determination of the threshold probability, however, is

not a trivial or intuitive task. For this reason, the designer
is not required to provide a blind input of this parameter;

instead, color graphics are used to portray the computed ground
class profile, thus permitting experimentation with different

levels of conservatism. For each level of the threshold
probability the corresponding sequence of design-construction
methods is computed and presented in graphics form. The
objective of this interaction is to allow the user to specify a
threshold probability that reflects his own philosophy and risk
preference. This step is a fundamental requirement for the

general acceptance of the system by practicing engineers; it is
also the main feature that distinguishes a decision-support

system from an optimization model.

On the other hand, the threshold probability must not be
based exclusively on the designer's risk exposure and risk
attitude. Under current practice, the designer usually serves as
the specifications writer for the owner-contractor contract.
Thus, it is not uncommon for the designer to possess information
relevant to the contractual sharing of risk between the owner and

the contractor. This information must be used in specifying the

threshold probability so that it also reflects the contractor's

exposure and behavior under risk. Because of their strong
dependence., the interaction between design and construction
decisions cannot be directly modelled since it involves the

conditional prediction of behavior which cannot be easily
quantified and for which there are no objective data.

On the basis of the above discussion and for the purposes of
developing a decision support system for the evaluation of
exploration, the threshold probability rule enjoys certain
advantages over other more "formal" decision models (for example,
stochastic dynamic programming (Howard,1960; Kim, 1984)):

1. It eliminates the necessity to predict the designer's
decisions without considering the latter's reaction to

contractual and financial liability by allocating this task
to the most appropriate party (the designer).

2. It models the conditionality between design and

construction decisions, which cannot be predicted a priori
without considering the specific characteristics of the
project, both technical and contractual.

3. It permits the development of a system that does not force
the designer or the owner into evaluating exploration by
assuming that design and construction decisions are simply
based on expected cost minimization. Formal models (like
stochastic dynamic programming) cannot readily account for
the defensive strategies associated with underground design
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and construction. In contrast, the threshold probability
rule can be used to evaluate exploration according to the
personal preferences of the entities involved, taking into
account the adopted risk sharing approach as implemented in
both the design and construction contracts - the behavioral
effects of which cannot be predicted by other means.

4 The Cost Model.

The objective of the cost model is to produce an estimate of

the project cost given the sequence of design-construction

methods predicted by the threshold probability rule. This is

accomplished by a second order approximation which computes the
mean and variance of the following cost function:

n n n

C = a + Z bi + 1 Z cij `.
i=1 i=i=1

m. m.
n 1 n i e.k
7- E d w. + E E ---

i=1 k=1 lk 1k i=1 k=1 rik 1k

Where:

n : the number of construction methods CMi considered.

mi the number of segments in which CMi is used.

wik : the extent of the kth segment in which CMi i s used.

a : fixed cost, independent of the construction methods used.

b. : fixed cost uniquely associated with the use of CM;.

cij cost of change from CMi to CMj.

fij the number of times CMj follows CMi.

d=k the cost per foot of using CMi in segment k.

elk : the time dependent cost of using CM; in segment k.

rik : the advance rate when using CMi in segment k.

The policy -dependent variables corresponding to the
specified threshold probability and the current (posterior)
ground class profile are fij and wik . The rest of the necessary

input, i.e. the cost and performance parameters presented above,
can be easily provided by the designer with little additional
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effort since most of the required unit costs are also necessary
for preparing the engineer's estimate. In addition to the
expected value of these variables, however, the designer must
also specify the variance of their distribution. This can be
accomplished through statistical analysis of existing data or
direct encoding of the mode , and the 5 and 95 percentiles using
subjective judgment.

The cost model along with the geologic prediction and
design-construction models represent the basic components of the
estimating system that links the amount of available geologic
information to the final cost of a protect.

5 The Evaluation of Exploration Programs.

The models presented above illustrate the basic methodology

for estimating the expected value and the variance of project
cost as a function of the already available geologic
information. This section describes how the same basic models
can be integrated into a simulation system for evaluating future
exploration programs.

In order to evaluate a future exploration program the
evaluation model uses Monte Carlo simulation to create a
sufficient number of sets of "artificial " observations, where
each set represents a possible outcome of the proposed
exploration. Each set of simulated observations consists of one

observation for each geologic parameter and for each location
where exploration will be conducted. The alternative to

simulation is to use event trees and the traditional decision

analysis methodology for the evaluation of sampled information.
This approach, however, requires the complete enumeration of all
possible combinations of observation states, for all parameters
and for all observation locations. For example , if the geologic
model includes 3 parameters, each having 4 observation states,
and the proposed exploration program consists of sinking 15
boreholes, then the number of combinations that must be

considered is 3*415 =3,221,225,472 . It is obvious from the

magnitude of this number that direct enumeration is not a viable

alternative even for seemingly simple cases . Simulation is the
only methodology that can be successfully employed.

The necessary input to the evaluation model consists of:

- A list of locations along the project alignment where

observations will be made,

- The reliability matrices of the methods to be employed, and

- The specification of which method will be used at each
location and for each geologic parameter.

J
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This input is used to generate artificial observations at

each location by performing Monte Carlo sampling on the inverse
cumulative observation state probability profiles. These
profiles are easily generated by applying the Total Probability
Theorem to the updated geologic parameter profiles produced by
the geologic prediction model and the reliability matrices
associated with the methods employed by the proposed exploration
program. The geologic parameter profiles used for this purpose,
are already updated to reflect the findings of previous
("actual") exploration; they also constitute the "prior" which
must be updated for each set of simulated observations using the
geologic prediction model.

For each set of simulated observations the three previous
models are repeated in order to:

- Update the parameter geologic profile and the ground class
profile,

- Determine a new sequence of design-construction methods
(using the already established threshold probability), and

- Produce an estimate of the corresponding expected value and
variance of the project cost.

By simulating a number3 of observation sets enough data
points can be generated to produce a reliable estimate of the
expected value and variance of the project cost under the
assumption that the proposed exploration program is indeed
undertaken.

The cost estimates provided by the simulation model are then
used to compute the expected value of sampled information (EVSI)

of the exploration program. If the owner is a risk-neutral
decision maker, then the EVSI is equal to the difference between
the expected cost of the work with and without the proposed
exploration minus the cost of conducting the investigation. If
the decision maker is risk averse , then the model results can be
used for constructing a simple decision tree showing the owner's
two alternatives: to adopt, or to reject the proposed exploration
program. Since the terminal monetary outcomes of either decision
can be readily computed using the described models (at least in a
mean-variance form) it is- quite easy to apply the concepts of

Utility Theory and compute the EVSI taking into account the
owner's attitude towards risk.

Given this analysis an exploration program is considered
acceptable if it has a positive EVSI; furthermore, it is

considered optimal if it has the highest EVSI among all

The number of simulations depends on the required accuracy of
the estimates, which is typically quantified by specifying the
desired width of confidence intervals around the estimate.
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acceptable alternatives.

6 An Example Application.

The previous models for the evaluation of subsurface

exploration have been implemented as a computerized decision
support system called EVGE (Expected value of Geologic

Exploration). This system runs on a DEC VAX 11-780 using a DEC
GIGI color graphics terminal.

This section presents an example application of this system
for the discharge water tunnel project of the Seabrook Power

Station, NH (Ioannou 1984; Rand, 1974; GEI, 1974). The actual

discharge tunnel is over 15,000 ft. long. Only the western

portion from boreholes ADT-1 (t=0 ft.) to ADT-42 (t=7662 ft.)

are used this example (Figure 2). The exploration program
being considered is a pilot tunnel running the full length of
this portion.

Four geologic parameters are used to describe the tunnel
characteristics: Rock Type, Joint Density (RQD), Degree of
Weathering and Availability of Water. An estimated profile for
rock type for this project is shown in Figure 3. A detailed
description of the regional geology can be found elsewhere (Rand,
1974). The definition of states for these parameters are shown in
Table I. Or. the basis of available information the transition
intensity coefficients and the transition probabilities for each
parameter were directly encoded using a geologist's expert

judgment (Table 2).

Although no frequency data were available for estimating the

necessary Markov process parameters for this project, there were
several point observations obtained from boreholes along the
tunnel axis. The observed parameter states and the reliability
of these observations are shown in Tables 3 and 4. Based on the
above data the geologic prediction model produced the parameter
profiles shown in Table 5.

Five design-construction alternatives were identified as
suitable for the construction of this project (Table 6). Table 7

shows the definitions of the corresponding five ground classes in
terms of the geologic parameter states. The resulting ground
class profiles computed from the output of the geologic

prediction model are shown in Figure 4. Figure 5 shows the
complement of the corresponding cumulative ground class profile
and an example application of the threshold probability rule.

During an actual session with the system these profiles are
shown in color graphics on the GIGI terminal . This permits the
designer to check the validity of the geologic prediction
produced by the system using his own subjective expectations;
furthermore, he can also experiment with different levels of the
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threshold probability by comparing the resulting sequence of
design-construction methods shown on the screen against his own

judgment.

The unit costs and production parameters used for estimating
the cost of the project are shown in Table 8. Table 9 shows the
resulting cost estimates for different levels of the threshold
probability.

For the purposes of this example the pilot tunnel being

evaluated as an exploration alternative was assumed to provide

observations with perfect reliability. Furthermore, the
continuous observations provided by the pilot tunnel were
discretized and assumed to occur every 300 ft. The resulting
estimates of project cost using 100 simulated sets of the pilot
tunnel observations are shown in Table 9.

The difference between the expected value of the work with

and without the pilot tunnel represents the upper limit for the
cost of constructing the pilot tunnel, if it is to be an
acceptable alternative. As expected, the value of the pilot
tunnel decreases as the acceptable threshold probability
increases (and hence the conservatism in design and construction
decreases). This is an illustration of the fact that the
effectiveness of risk sharing and risk reduction are closely
interrelated. If most of the risks are borne by the designer and
the contractor, the resulting conservatism might make the
construction of a pilot tunnel an acceptable investment. On the
other hand, if the owner assumes a significant portion of the
risk, the resulting decrease in conservatism could very well make
the pilot tunnel unattractive due to its high cost.

7 Conclusion.

The development of the models described in this paper and
their integration in a decision support system ( EVGE ) allow - for
the first time - the rational evaluation of subsurface
exploration programs . The proposed system provides the owner
entities of underground projects with the capability to quantify
the benefits of exploration by reducing the defensive strategies
of design. conservatism and excessive construction contingencies
typically employed by designers and contractors in the US. Even
though this system cannot be used to identify the globally
optimal exploration alternative, it represents a major
improvement over current practice and its further development and
use should eventually help decrease the high cost of underground
construction in this country.
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Figure 1: The Cumulative Form of the Ground Class Profile

And the Application of the Threshold Probability.

Figure 2: Seabrook Power Station Discharge 'Water Tunnel.

Figure 3 Seabrook Power Station Discharge Water Tunnel.

Estimated Rock Type Profile ( Chan, 1981).
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(a) Rock Type (R)

r Definition

1 Schist

2 Metaquartzite

3 Diorite

4 Quartzite

(b) ROD (D)

d Definition

I High 75-1002
2 Medium 25-75%
3 Low 0-25%

(c) Degree of Weathering (E)

e Definition

1 Not Severe

2 Severe

(d) Availability of Water (W)

w Definition

1 Low
2 Medium
3 High

Table I: Definition of Parameter States.

i
j. 1 2 3 4 CRi

------------ - ------------------------------------

1 .00 .02 .23 .75 .00138

2 .02 .00 .50 .48 .OJ822

3 .02 .20 .00 .78 .00262

4 .23 .17 .60 .00 .00250

Table 2 . Transition Probabilities ( first 4 columns) and
Transition Intensity Coefficients for R.

174



I

0 0 0 In O
O P) O -, O
O O O O

000 0-

0.0 00
00 0 00
000 rv O

0-+ 00

O P) O 0 0 N
.00 no z

0 0 0 0 0 W
O

000 O O

z
0

0-0 O
000 0 0 0
000 00

x
000 00 It

a
a

W
O n n o o a
000 O O
+ + + 1 + W
W 14 W W 41 0
0 0 0 0, a
0 0 .00 O.

0 N 000
O n n F F >.

F
0<10 00

t4
P, N n h O Q

n n 0

n.

0 0 0

0 O O O

L

a r rv •n y

V

u w

G L

0-0 .0
O Z O 'O
0 0 . 00

0
z

000 00 W

F
4
to

0 o 0 -0
o •+o PO It
O -+O 0 0

-100 00 W rvN

0 o0 tv0
010 r -O
0.0 . F 0

00- 0--

W
n v o a0"

coo 00 1-t
+ + + + + W
W W W W P1 0
000 0rv OC
00 .0t0 a

a 00. 0 0 1)
fr. O n n F F >• a

F
0 0 0 00

a

ti 0 [L
1. ti rv n • F 0 4 la

n n 0
0

9.

I N O In
n O P

O 0 O

e

a
W 0 0 0 v 0
F 000 .0
4 O O O O O
3 In

7 000 00 u
W
O

0
F' O
H Y

00 0 00 000 00 p,
000 0 0 1.] 000 -0
0 0 0. 0 0 • `+ OO O 00 L

m .
000 00 4 rv 000 00 i

a I I
C-I E
4
4 Y
4 II1

0, 0 00 00O 20 0.
Cal 0 N 0 000 0
0 0 O P O O m O 0,OI O U

• x
0 ., 0•. 0 -+ 0 rn

W
0

00W
o 0 0o n n 0 0 ,) 0 n n

0

00 O 00 H 000 00
+ + + + + W + + + + +
W W W W W 0 W W W W W
00 0 0 ev a 002 0 rv 0
00++ .00 a 00--I .010
O 0 0 0 10 ) 00 0 I[) 0 y
O n O F F >• W. 0 n n F F

F
0 0 0 00 000 00 ro
a F

0 O
* N n. F 0 4 H -+ N n . N m

n 0
0

0.

O 0' O
o .O

n n .•+ ... rv n ^

P O O

^ n
^

a I n

O v b



1

CM EXCAVATION-SUPPORT METHOD I d e v

1 Full face drill and blast. 1: 1,2,3 1 1 1,2

No support.

2: 4 1 1 1 22 Full face drill and blast. ,

Conventional steel sets.

3: 1 42 3 2 1 2Amount of support : medium.
, , ,

1,2,3,4 2 1 1

3 Heading and bench drill and blast.

Conventional steel sets.
4: 1,2,3,4 3 1 3

Amount of support: medium.
1,2,3,4 2 1 3

41 2 3 1 1 34 Heading and bench drill and blast. , , ,

1 42 3 3 1 2Conventional steel sets.
, , ,

41 2 3 3 1 1

5

Amount of support: large.

Multiple drift drill and blast.

, , ,

5: 41 2 3 3 2 1 2 3Conventional steel sets. , , ,

41 2 3 2 2

. ,

1 2 3Amount of support : large. , , ,

1,2,3,4 1 2

, ,

1,2,3

Table 6 : Generalized Construction Methods
Corresponding to Defined Ground Classes.

1.0

17
c 0.2
0
L
(.7

0.0

Horizontal Alignment of Tunnel (ft)

I

Figure 4: Ground Class Profile (All Classes)

Table 7 : Ground Class Classification Table.

Class 1 (-) 2(------) 3( --- ) 4(---) 5(---)
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Class : I (-) 2( .• •) 3( --- ) 4(---)

1000 2000 3000 4000 5000 6000 7000

Horizontal Alignment of Tunnel (ft)

0.0

Figure 5: Probability of Design -Construction Method

Inadequacy.

CM1 CM2 CM3 CM4 CM5

Fixed Costs $ 1265800 1265800 1610900 1630400 1936900

Permanent Materials
and Supplies

9/ft 112.79 219.24 307.21 811.15 1186.23

Time dependent f/hr 632.49 632.49 745.52 745.52 793.52

Time dependent $/mth 81100 81100 81900 81900 85200

Change of method 3/shf 2600 2600 2600 2600 2600

Advance rate a : 18 10 9 7 4
feet/(8 hr shift) m: 16 8 7 5 3

b: 13 7 5 4 2

Table 8 Unit Costs and Advance Rates (Salazar , 1983).

No Pilot Tunnel Pilot Tunnel

Thresh. ---------------------- ----------------------
Prob. E[C? SD[C: _rci SDrC'

---------------- ° -------------------- ------------------
0.01 34 ,467,148 4,848 , 535 22 , 155,656 2 , 583,944
0.05 29.23:,520 3,376,091 21,945, 368 2 ,538.38
0.10 25,003,520 2, 322.25 2 1, 682,494 2.482,630
0.20 22 ,347,852 2,:45,024 2.156.772 2,375,934

Table 9 : The Expected Value and the Standard Deviation.
Of Project Cost As a Function of the Threshold ?ro'babi;_ty.
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