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Abstract 

The proposed approach brings up a manner of cognitiveness that inherits a paradigm in 
particle swarm optimization to implement a chaotic mapping and enhanced by K-means 
clustering algorithm. In this work, named KCPSO, chaotic mapping with ergodicity, 
irregularity and the stochastic properties in PSO contributes to global search while K-means 
with clustering properties in PSO results in rapid convergence. 

Numerical results indicated that PSO adopting chaotic features can more easily escape from 
local optima, and meanwhile PSO incorporating with K-means can evidently improve 
convergence speed. Unpredictability and grouping principle underlying chaotic mapping and 
K-means methods often imply diversity maintenance and convergence potential within the 
swarm which inevitably lead to a desirable optimal solution.  

As proven in the experiments with multidimensional search space and compared with original 
PSO, the conclusions reported that the proposed KCPSO algorithm could improve the search 
performance on the benchmark functions significantly, and show the effectiveness of solving 
optimization problems.  

KEYWORDS: Particle swarm optimization, Chaotic mapping, K-means 

INTRODUCTION 

Particle swarm optimization (PSO) was first introduced in 1995 (Kennedy and Eberhart, 
1995). PSO algorithm has been developing very rapidly and many results have been reported. 
It is characterized as a simple concept, which is robust and easy to implement and compute. 
Concerning its implementation, PSO can easily be programmed and has few parameters to 
regulate. Due to these superior features of PSO algorithm, it has been emerged as a new and 
attractive optimization tool that has successfully applied in a variety of different fields. 
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Nowadays, PSO has been successfully applied to various optimization problems (Shi and 
Eberhart, 1999; Shi and Eberhart, 1998). 

Some reported works focused on the modification of PSO to solve the parameter selection 
problems (Zhao and Yang, 2009; Lin S.W., et al., 2008; Wu et al., 2008; Shen et al., 2007; 
Yuan and Chu, 2007). In 2008, a PSO algorithm was proposed to solve the parameter 
estimation problems for non-linear dynamic rational filters (Lin Y.L., et al., 2008). The 
proposed approach had significantly improved the approximation results compared with GA. 
On the other side, PSO combined chaos to enhance the searching efficiency had greatly 
improved the evolutionary abilities (Liu et al., 2005). In recent years, chaotic sequences have 
been adopted instead of random sequences and very interesting and somewhat good results 
have been shown in many applications (Alatas et al., 2009) such as secure transmission 
(Suneel, 2006; Wong et al., 2005), and nonlinear circuits (Arena et al., 2000), DNA 
computing (Manganaro and Pine, 1997), image processing (Gao et al., 2006).  

Clustering is one of the most important and the most challenging of classifying algorithms. A 
successful clustering algorithm is able to reliably find true natural groupings in the data set. 
K-means is one of the well-known algorithms for clustering, originally known as Forgy’s 
method (Forgy, 1965). K-means clustering is the process of dispatching a set of objects into 
groups or clusters of similarities. Objects collected in the same cluster have similar features, 
but others are not (Han & Kamber, 2001). K-means is famous for its simplicity and 
computational efficiency in clustering techniques. As aforementioned Chaotic algorithm is 
for population diversity in PSO, and K-means is for convergence efficiency in evolution. The 
former will keep the system accuracy, and the later will decrease iteration times of PSO 
significantly.  

In the face of increasing complexity and dimensionality of coming applications coupled with 
their tendency of premature convergence due to the high convergence speeds, some 
investigations have been undertaken to improve the performance of conventional PSO 
(Alatas and Akin, 2009; Leandro and Antonio, 2009; Leandro and Viviana, 2009). But, little 
attention is given in chaos coupled with K-means and PSO. And then, a hybrid PSO with 
adaptive chaotic search and K-means algorithm is proposed to optimize the object function in 
this paper. The proposed competitive K-means and chaos evolutionary approach is adapted 
for particle swarm optimization algorithm design, named KCPSO, which appears to have 
considerable potential for solving complex optimization problems.  

The rest of the paper is organized as follows. In section 2, descriptions of K-means, chaos 
and PSO are presented. In Section 3, the proposed algorithm, KCPSO, is described and 
analyzed in detail. The computational results are presented and analyzed in Section 4. In the 
last section, conclusions and future research are given. 

APPROACHES FOR OPTIMIZATION 

K-means Clustering Approach 

Clustering is the process of grouping a set of physical or abstract items into clusters by 
similar features. K-means is one of the well-known algorithms for clustering, and it has been 
employed extensively in various fields including exploring studies: such as data mining, 
statistical data analysis: such as Custom Relationship Management, and other business 
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applications. The K-means algorithm for clustering is based on the mean value of items in the 
group. It is suggested to assign each item to the cluster with the nearest centroid (mean) (Mac 
Queen, 1967). In general, in this study the primary operating procedures for K-means are 
presented as follows: 

(1) Defining how many clusters are to be created.  
(2) Randomly assigning initial items to different clusters. 
(3) Assigning new items to the cluster whose location to centroid is the nearest ( by 

Euclidean distance with either standardized or un-standardized observations) and re-
calculate the centroid for the existing or updated clusters. 

(4) Repeating Step (3) until no more reassigning. 
 

Chaos Approach 

Chaos can be considered traveling particles within a limited range occurred in a deterministic 
nonlinear dynamic system. There is no definite regularity for such a traveling path. Such a 
movement is very similar to a random process, but extremely sensitive to the initial condition. 
Chaotic dynamic mappings have been defined as noninvertible mappings of the (0, 1) interval 
onto itself. Logistic mapping (May, 1976; Feigenbaum, 1978) is one of the most important 
Chaotic dynamic mappings which defines the simplest mapping for studying the period-
doubling bifurcation (vide infra). In the well-known logistic equation (May, 1976): 

)1(),(1 nnnn XXXfX −==+ μμ                                                (1)  

in which μ stands for a control parameter, X for a variable and n =0,1,2,3…. It is easy to find 
that equation (1) is a deterministic dynamic system. The variable X is also called as chaotic 
variable. The basic characteristic of chaos could be presented by Eq. (1), for a very small 
difference in the initial value of X will cause large difference in its long-term behavior. 

The variation of control parameter μ of Eq. (1) will directly impact the behavior of X greatly. 
Usually, [0, 4] has been defined as domain area of control parameter μ. Different value in 
domain area of μ will determine whether X stabilizes at a constant size or behaves chaotically 
in an unpredictable pattern. The track of chaotic variable looks like in disorder. However, it 
can travel ergodically over the whole space of interest especially under the condition of μ = 4. 
Then, a tiny difference in initial value of the chaotic variable would result in considerable 
differences of the values of chaotic variable later. Generally, there are three primary 
characteristics of the variation of the chaotic variable, i.e. ergodicity, irregularity and pseudo-
randomness ( Bountis, 1995; Li & Jiang, 1998; Ohya, 1998). 

Logistic equation as shown in equation (1) can be distinguished by four intervals in 
accordance with the value of μ. First, when the value of μ is smaller than 1.0, the chaotic 
variable converges to a stable point 0.0. Then, if the value of μ is between 1.0 and 3.0, 
no mater what initial value for  between 0.0 and 1.0 was taken,  would converge to a 
certain value between 0.0 and 0.63665. And, the bifurcation occurs from μ≧3.0. The system 
will enter the chaos domain, if μ reaches a critical point of 3.5699456…. Finally, when μ =4.0 
the values of  would take any real numbers between 0.0 and 1.0 and no redundant value 
would present again while having turned up already. In this study, ’μ =4.0’ was taken to have 
the advantages of diversity during evolution. 

1+nX

0X 1+nX

1+nX
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Particle Swarm Optimization 

PSO has constructive cooperation by sharing information with other particles (Liu et al., 
2005). During iterative process, the behavior of each particle is compromised among three 
possible affecting factors: its own previous velocity and cognitive component and social 
component. The relatively high value of cognitive component will result in an excessive 
wandering of particle through search space, whereas a high value of social component may 
lead to a premature. In fact, the fitness value of each particle is determined by some defined 
functions and the velocity of each particle is updated by keeping track of global best position 
(gbest) and particle best position (pbest) in every iteration. Here, pbest is the best design of 
each particle traversed so far while gbest is the global best design found up to the current 
iteration. Therefore, the proper control of these variants, cognitive component pbest and 
social component gbest, can improve the performance of PSO. 

The original PSO algorithm was developed by Kennedy and Eberhart in 1995. After many 
numerical simulations, Shi and Eberhart suggested adding a weighting factor to prevent 
premature convergence of the original PSO algorithm (Shi and Eberhart, 1998). Therefore, let 
pi = [pi1,pi2,…piD] and vi = [vi1,vi2,…viD] be D-dimensional vectors which present the position 
and velocity of ith particle along the search space, respectively. Eq. (2) and Eq. (3) are the 
modified particle velocity and position updating equation. 

))()(()()1( 11 tptpbestrctvwtv iiii −××+×=+ ))()((22 tptgbestrc ii −××+          (2) 

)1()()1( ++=+ tvtptp iii                                                                                        (3) 

Where c1 and c2 are two acceleration constants, stand for the cognitive and social parameters, 
respectively; r1 and r2 are two positive random numbers uniformly distributed in the range [0, 
1]. According to Kennedy and Eberhart, these cognitive and social parameters, c1 and c2, are 
set equal to 2 in order to make the average velocity change coefficient close to 1 (Kennedy 
and Eberhart, 1995). In Eq. (2) w is inertia weight in the range [0,1], and the subscript i 
indicates the ith design variable, and t is the iteration number. v and p denote the velocity and 
position, respectively. 

PROPOSED APPROACH KCPSO 

Inspired by the chaos spread-spectrum distribution and unpredictable irregular motions and 
the gbest fluctuating migration in PSO, this paper provides a novel combined optimization 
method, which introduces chaotic search into PSO based on K-means clustering algorithm, 
named KCPSO, so as to improve the searching performance for global optimum. It is a 
promising way to achieve optimal trade-off between exploration and exploitation. Moreover, 
it is an effective way in dealing with the updating of velocity and position in KCPSO. The 
use of chaotic procedure combined with K-means clustering algorithm in PSO can be more 
helpful to solve some multimodal functions and avoid getting stuck from local optima than 
that can be done in a conventional PSO. 

K-means plays a critical role in convergence of PSO. Chaos algorithm can keep PSO 
population diversity and avoid from premature. To take advantages of the above described 
benefits in PSO, a novel algorithm combined K-means clustering and the Chaos algorithms 
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with parallel population-based PSO was proposed as a powerful hybrid algorithm called 
KCPSO (K-means and Chaos in PSO Algorithm). Initial swarm members of KCPSO should 
be generated by chaotic algorithm, and then chaos function would keep diversifying the 
swarm members in an ergodicity, irregularity and pseudo-randomness way. Then, K-means 
clustering in this study will help to group swarm members in several clusters as pre-defined. 
Thus, location information of each centroid of cluster would be treated as candidate swarm 
members for the coming evolution. A competing procedure was employed to eliminate lower 
fitness value members, and reserved the others to create formal swarm for KCPSO iteration. 

Chaos procedure activated in PSO procedure will contribute to locate global optimum in 
early stage, while K-means clustering activated in PSO procedure will improve convergence 
performance in final stage. The proposed PSO based approach employed the complementary 
properties from chaos and K-means clustering algorithm will present their mutual talents in 
exploration and exploitation. 

Chaos is nonlinear in nature (Lu, Z. et al., 2006), and can help global searching by its 
diversity characteristic; however, it will cause much more computation time before getting 
convergent. To perform effectively, chaos algorithm employed in this study was a probability 
based function; that is, chaos function would be triggered with high probability in the 
beginning and decreasingly by iteration times. At the meantime, chaos function contributed 
global searching to PSO evolution from initial, and reduced its affecting range by times to 
comply with PSO convergent procedure at end. 

K-means is a grouping technique which explores existing searching space, points out the 
centers of population groups and offers a short cut to convergence during PSO evolution. 
Unfortunately, K-means efficient convergent feature could not improve the heterogeneity of   
swarm members to enlarge the possible searching space for global optimization in this study. 
Hybrid chaos and K-means with PSO could combine their characteristics and merits together; 
therefore, a PSO based global searching with effectively convergent could be reached. 
Apparently, it is a nonlinear approach to search in global space with less fit for linear 
problems. 

In this work, the initialized particles were generated by chaos procedure to diversify their 
positions between the lower and upper bound of the domain values. Moreover, the parallel 
population-based evolutionary characteristics of PSO, ergodic and irregular properties of 
chaos and potential moving tendency resulted by K-means clustering algorithm were 
cohesively combined to show their superior performance in locating optimal solution. During 
evolution, KCPSO would generate a certain rule to direct swarm migration, then swarm 
members would be modified coherently along the evolution process which represented the 
designed association rules. In particular, K-means clustering algorithm and chaotic approach 
would be exploited in KCPSO to thoroughly explore the entire search space and to point out 
the most appropriate migration way for the designed algorithm. Simulation results and 
comparisons had clearly demonstrated the effectiveness and efficiency of the proposed 
KCPSO. And, the flow chart of proposed algorithm KCPSO is described as following: 
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Fig. 4. Flowchart of KCPSO algorithm 

 

EXPERIMENTS AND ANALYSIS 

Experiment Setup 

All the experiments were completed on a 1.83 GHz Core 2 Due T5550 processor with 2.99 
GB of Random Access Memory (RAM). In every case study, 50 independent runs were made 
for each of the optimization methods involving 40 different initial particle trial solutions for 
every optimization method. For each testing problem, the parameters were set as follows: 

= =2.05. Two criteria were applied to terminate the computation work: reaching 
maximum number of iterations ‘1E+5’, and the second criterion was that swarm members 
converged within a minimum scope of 1E-05. 

1c 2c

Experiments Over KCPSO  

KCPSO was designed to benefit from the well constructed scheme of complementary 
contributions of the employed algorithms. Experiments have been performed to evaluate and 
compare the outcomes of KCPSO with other PSO methods. In Table 1-4, for every 50 
independent runs, KCPSO takes the shortest average evaluation time and find out global 
optimum with excellent probability. Accordingly, it is concluded that KCPSO is much 
effective and robust for these kinds of complex numerical optimizations. 
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The proposed chaotic search coupled with PSO can not work well in cope with Sphere and 
Rosenbrock function, while K-means clustering algorithm embedded in PSO has poor 
performance in solving Rastrigrin and Griewank functions, as shown in Table 1-4. However, 
the complementary characteristics of chaos, K-means and PSO are well arranged in KCPSO, 
their contributions have improved the performance of PSO to superior which can be easily 
proved by an analysis of the computational results in this work. 

In this context, the use of chaotic search in PSO was more helpful to conduct a proper way 
for swarm migration than that could be done through the K-means clustering algorithm in 
conventional PSO. Meanwhile, K-means clustering in PSO would conduct unpredictable 
moving tendency to help escape from local optima. Consequently, the experiment results 
have shown that the well hybridized KCPSO has earned an excellent synergy over 
combination in terms of fast convergence and perfect success rate. The outstanding 
performance also confirms the effectiveness and robustness of the proposed method.  

Table 1-4 illustrate the varying performances resulted by different approach. It can be seen 
that the impact of iteration over success rate is more sensitive for KCPSO than for other three 
algorithms. The computational results have clearly demonstrated that KCPSO, employing 
complementary features from K-means clustering algorithm, chaos approach and PSO, is a 
well designed algorithm for solving unimodal and multimodal problems. 

 

Table 1: Sphere Function 
KCPSO KPSO CPSO PSO Functions 

Iteration Sec. Iteration Sec. Iteration Sec. Iteration Sec. 
Success 1.00 1.00 0.70 0 
Mean 103.80  0.55 3034.75 25.80 35027.60 44.55 8332.20 18.89 
Min 85  0.43 2332 20.85 1454  1.85 3705 8.53 
Max 121  0.76 3623 30.63 100000  128.49 18669 41.87 
Std. D. 10.29  0.08 347.58  2.78  44208.81 56.20 3888.20 8.65 
 

Table 2: Rosenbrock Function 
KCPSO KPSO CPSO PSO Functions 

Iteration Sec. Iteration Sec. Iteration Sec. Iteration Sec.
Success rate 1.00 1.00 0 0 
Mean 4845.65 26.81 4909.35 41.54 14891.55 20.31 100000 54.80 
Min 4387 23.93 4064 35.46 6637  9.03 100000 54.72 
Max 5489  30.00 5910 52.01 38440  52.45 100000 54.98 
Std. D. 351.44  1.95 523.45 5.10 8046.33  10.97 0.00 0.06 
 

Table 3: Rastrigrin Function 
KCPSO KPSO CPSO PSO Functions 

Iteration Sec. Iteration Sec. Iteration Sec. Iteration Sec. 
Success rate 1.00 0 0.80 0 
Mean 99.50  0.53 2600.20 22.18 26646.55 39.18 6072.90 5.32 
Min 75 0.39  2133  17.62  1924  2.85  2778 2.43 

406



27th International Symposium on Automation and Robotics in Construction (ISARC 2010) 

 

Max 124  0.77 3407  28.65 100000  147.02  12168 10.71 
Std. D. 11.95  0.09  309.29  2.85 38296.18 56.19  2620.13 2.30 
 

Table 4: Griewank Function 
KCPSO KPSO CPSO PSO Functions 

Iteration Sec. Iteration Sec. Iteration Sec. Iteration Sec. 
Success 1.00 0.15 0.90 0 
Mean 105.80 0.65 2864.55 25.21 16103.95 35.24 4274.75 5.57 
Min 82 0.51  2417  21.23  1178  2.62 2800 3.75 
Max 129  0.89 3361  29.69 100000  218.88  6963 8.80 
Std. D. 13.26  0.09  325.01  2.87 30052.47 65.55  1319.05 1.68 
 

CONCLUSIONS 

This study has proposed a procedure which joins K-means and chaos attributes based on 
particle swarm optimization algorithm. The proposed procedure is not only to enhance the 
diversity of PSO for more accuracy but also to extract clustering rules for achieving a 
potential trend of evolution. Additionally, it can effectively improve some drawbacks of 
traditional PSO, such as long running time and getting trapped in local optima.  

However, the future works will include detailed theoretically investigations, such as parallel 
or distributed implementation of the designed algorithm and modifications for various 
heuristic methodologies (e.g., ant colony optimization, A.C.O.) to improve their 
performances. 
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