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Purpose  Each production process in construction is closely connected with the question of costs and deadlines. In 
every project an investor or customer, as well as the construction company, has to meet the planned completion date 
and the estimated costs associated with the construction. In practice, determining the duration of construction at mini-
mum costs is still not based on the reliable calculation, and in the planning of costs, the connection between terms and 
financial costs is rarely taken into account.  Method  The queues theory examines systems with operating channels, 
where the process of queues formation takes place and subsequent servicing of the customers by servicing centers. The 
main objective of the queues theory is to determine the laws under which the system works, and further to create the 
most accurate mathematical model that takes into account various stochastic influences on the process. The entire con-
struction process can be examined from the point of view of a customer who is waiting in the queue and is interested 
primarily in the waiting time, as well as from the point of view of servicing centers. A waiting element decides if you join 
the queue, or to go to another system entirely. In terms of servicing centers, the priority is to determine the occupancy of 
the channel and the probability of failure, including the time of repair. A servicing center should also reliably identify the 
time per customer service, taking into account the current construction task.  Results & Discussion  The present study 
demonstrates that it is possible to simulate the complex process of construction, containing hundreds of individual con-
struction processes, mathematically and technically, with a number of simplifications, and then perform various calcula-
tions and changes for effective and long-term planning of construction. The mathematical simulation should show that 
some variants of machines combinations fail to accomplish the task under the given conditions, some will not be optimal 
in terms of costs or other parameters, other variants will be optimal in the view of costs required to fulfill the construction 
task. The simulation software allows a look at the results in graphical form or to export data to other programs. Applica-
tion of the queues theory allows the introduction into the system waiting time the servicing elements and to approximate 
the mathematical model to a real working tasks on site. 
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INTRODUCTION 
Each production process in construction is closely 
connected with the question of costs and deadlines. 
An investor or customer, as well as construction 
companies themselves in every project have to meet 
the planned completion date and the estimated costs 
associated with the construction. In practice, deter-
mining the duration of construction at minimum cost 
is still not founded on a reliable calculation, and in 
the planning of costs, the connection between terms 
and financial costs is rarely taken into account. 
At present, some programs are available for the 
analysis of building production and for scheduling 
with the help of network graphs, timetables and their 
optimization. A further supporting facility to optimize 
the prices is so called internal corporate guidelines; 
construction companies produce them depending on 
their own experience and statistical values. Some of 
these documents are then used to optimize the use 
of machinery and to create building plans. Other 
similar information instruments, especially for the 
optimization of construction processes, do not yet 
exist, or they are produced only in a small and evi-
dently insufficient volume. In particular, the sphere of 

the optimal choice of machinery is still in its early 
stages of development, and a software, which would 
allow an easy optimal choice of machinery in terms 
of minimizing labour content and costs, fuel con-
sumption, time of construction, environmental im-
pact, etc., including relevant data, does not exist on 
the internet basis. 
 
THE QUEUING THEORY 
The current practice does not allow construction 
companies to perform detailed time-consuming cal-
culations of optimization during formulation of their 
offers. An offer is usually focused on the contract 
price, which has to match the situation in the con-
struction market. Optimization steps are therefore 
made only after the contract is signed. This study is 
devoted to the creation of a technical and mathemat-
ic model and to searching the methods leading to the 
optimization of construction processes (minimization 
of labor and costs, fuel consumption, time of con-
struction, environmental impact, etc.) by means of 
special simulation software. 
The queuing theory examines systems with operat-
ing channels, where the process of queues formation 



takes place and subsequently the servicing of the 
customers by servicing centers. The main objective 
of the queuing theory is to determine the regularities 
under which the system works, and further to create 
the most accurate mathematical model that takes 
into account various stochastic influences on the 
process. The entire construction process can be 
examined from the point of view of a customer who 
is waiting in the queue and is interested primarily in 
the waiting time, as well as from the point of view of 
servicing centers. A waiting element decides in what 
queue to be included or whether to go to another 
system entirely. In terms of servicing centers, the 
priority is to determine the occupancy of the channel 
and the probability of failure, including the time of 
repair. A servicing center should also reliably identify 
the time of customer servicing, taking into account 
the current construction task. 
As a result of the application of the queuing theory, a 
mathematical model should provide the data regard-
ing the optimal design of servicing centers and, at 
the same time, determine the number of customers 
taking into account the optimization parameters. The 
parameters, under which the construction process 
will be optimized, may be the following: time, number 
of failures, fuel consumption, financial costs, envi-
ronmental impact etc. 
The queuing theory appeared in the early 20th cen-
tury. Fundamentals of the theory were developed by 
Danish mathematician Agner Krarup Erlang (1878-
1929), who examined the development of call cen-
tres. According to D.G. Kendall6, any system of the 
queuing theory can be classified according to the 
following combination of letters and numbers: 

 
Fig.1. Classification of the queuing theory 

 

where A – describes the input stream of elements, B 
– describes the probability distribution during service 
time, C – describes the number of service lines, D – 
specifies the maximum number of elements in the 
system, E – describes the queue discipline (finite, 
infinite, FIFO, LIFO, etc.). 
The parameters "A" and "B": in place "A" and "B" 
may be presented by the following symbols: 

 M – for exponential distribution, 
 D – for constants (deterministic intervals), 
 KK – for Erlang distribution of k-type, 
 G – any distribution. 
Basic structure of the queuing system is illustrated in 
Figure 2. 

 
Fig. 2. Basic structure of the queuing system 

 

A closed queuing system is shown in Figure 3. 

 
Fig.3. Closed queuing system 
 
For the optimization of a construction process, a 
closed system is more convenient, where customers 
given a certain time after the service return back into 
the system and go to the queue again. Under a 
closed process there is understood a situation, 
where the source of requirements is final. The queue 
length is limited and the processing of customers’ 
requirements is done according to the FIFO method 
(first in - first out). 
As an example of the application in use there can be 
given an optimization of construction machinery at 
the stage of "earth works", where the role of servic-
ing centers is performed by the loaders or excava-
tors (number C) and the role of customers is played 
in the system by trucks or dumpers (number D). We 
investigate a system where D is greater than C. 
For each construction process, a time unit can be 
determined according to the depth of view on the 
mathematical model of optimization, for example, 
minute, hour, shift, week, month etc. For a proper 
functioning of the mathematical model of the queuing 
theory application, the following range of conditions 
has to be met5: 
 input of an element into the queue can occur at 

any moment of time; 

 the number of inputs during the time interval 
depends on the length of the interval and the 
type of distribution of a servicing centre per-
formance (e.g. uniform, power-series, falling or 
rising) and the scheme of a servicing machine 
performance is given by the parameters of the 
construction task; these are determined before 
the mathematical simulation and do not change 
during the mathematical modelling; 

 the probability, that in the interval of the length 
δT occurs, more than one input converges to 
zero more quickly than the length of the interval 
δT; 



 the average number of inputs per the unit of 
time is equal to λ. 

To calculate the characteristics of the system, the 
following formulae have to be used. The service 
intensity can be determined as follows: 






C
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where:  λ is a parameter of the exponential distribu-
tion, which characterizes the time spent by an ele-
ment outside the operating system, for example, 
removal of soil to landfill and return of the truck back 
to the servicing centre; µ is a parameter of the expo-
nential distribution, which characterizes the time 
spent by an element during service, for example, soil 
loading on a truck by a loader.  

The probability of Pk function, that in the time interval 
of the length T number of elements k= 1, ..., C enter 
the system, can be expressed as follows: 
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where P0 is determined as follows: 
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After that we can easily calculate other properties of 
the system: 

The average number of customers in service: 
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The average number of customers in the queue:  
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The average number of customers in the system: 

ELESEK  ,                                          (6) 

We can easily derive and use formulas for calcula-
tion of further parameters of the system, for exam-
ple, system use, the average waiting time of an ele-
ment in the queue inside and outside the service 
system. Different probabilities of elements’ failure 
and idle times can be identified. After inclusion of 
other parameters in the mathematical model we can 
calculate further properties of the system, such as 
cost characteristics, duration of construction pro-
cesses, environmental impact, fuel consumption, etc. 
After the introduction of all of the regularities in the 

mathematical model we can perform a variety of 
optimization tasks and propose an optimal choice of 
machines combination for a particular construction 
process according to various criteria. 

 
SIMULATION SOFTWARE 

For the mathematical modelling and simulation, spe-
cial software was used1. The software allows an 
easy input of additional more precise parameters 
and coefficients into the model. A mathematical 
modelling was performed by the example of a con-
struction phase "earth works". On the basis of the 
simulation results, an optimal design of machinery 
(excavators) for this task will be chosen from three 
possible options, as well as the optimal number of 
trucks for removal of soil. The decisive factor is the 
task fulfilment within a certain time with minimal 
financial costs. The volume of the task is constant 
and does not change. Other machinery, in this case 
the type of trucks (dumper), is predefined. The num-
ber of channels is based on the geographical condi-
tions of the construction site, and, in our example, is 
given, N = 1. For simplicity, we will always choose 
the same kind of excavators for each channel. 

 

 
 
Fig. 4. Mathematical model of the system 
 
The whole mathematical model can be divided into 
three parts: input, core of the model, and output. See 
Figure 4. The mathematical model contains several 
important subsystems for the calculation of machin-
ery failure and for the determination of economic 
parameters of the system; see Figure 5. 
Further, the input parameters of the mathematical 
model will be described: 
 construction process: excavation, construction 

pit, figure 1; 

 volume of the task: 6 000 m3, workability class: 
3, loosening coefficient Kn = 1.25, the total vol-
ume of soil Qexc = 6 000 x 1.25 = 7 500 m3; 

 parameters of auto truck (dumper) are shown in 
table 1.: dumper, body volume – 15 m3, the av-
erage travel time from site to landfill and back is 
30 min., financial costs of machine operation: 
fixed costs – 3000 CZK, variable costs – 1 000 
CZK /hour, the maximum number of dumpers – 



15; the failure rate is 2%/day; the average repair 
time – 2 hours; time of delivery to servicing ma-
chine is 2 minutes.  

 
Fig. 5. Subsystems of the mathematical model in SW1 

 
Fig. 6. Subsystems of the mathematical model in SW1 

 

Parameter Value 

Body volume, [m3] 15 

Average travel time, [min] 40 
Average time of maneuvering and 
unloading, [min] 

2 

Average loading time by excavator 
performance, [min] 

15 x 60 / P 

Fixed costs, [CZK] 3 000 

Variable costs, [CZK/hour] 1 000 
Average failure rate, [%/day] 2 
Average repair time, [min] 60 
Maximum number of dumpers, [-] 15 

Table 1. Input parameters of the auto truck7 

 

 Working shift TS = 8 hours per day, i. e. 40 hours 
per week. 

 Construction task has to be performed maximum 
in 2 weeks (TM = 80 working hours, that is 4 800 
minutes). 

 The input parameters of proper excavators are 
described in Table 27. Most of the input parame-
ters of machines are given by the manufacturer 
or calculated and averaged on the basis of ob-
servation and monitoring. An appropriate output 
per hour of an excavator, without the influence 
of random disturbances, according to9 is greater 
than 

Papp= =7 500 / 80 / 1 = 93.75 m3/hour   (7) 

 Basic time unit is a minute. 

Parameter Variant 1 Variant 2 Variant 3

Bucket volume, [m3] 2 3 4 

Average duration of 
working cycle, [min] 

0.83 0.67 0.625 

Average hourly out-
put, [m3/hour] 

100 120 150 

Fixed costs, [CZK] 5 000 7 500 15 000 

Variable costs, 
[CZK/hour] 

2 000 3 000 4 000 

Probability of failure, 
[%/day] 

2 4 3 

Average time of re-
pair, [min] 

60 80 90 

Table 2. Input parameters of excavator7 

 
The total average time of the truck working cycle for 
each variant without the influence of random factors, 
according to9 is equal to: 
 
TC1 = 40 + 2 + 15 x 60 / 100 = 40 + 2 + 6 = 48 min. 
TC2 = 40 + 2 + 15 x 60 / 120 = 40 + 2 + 5 = 47 min. 
TC3 = 40 + 2 + 15 x 60 / 150 = 40 + 2 + 4 = 46 min. 
 
Hourly output of the truck for each variant according 
to9 is the following: 
 
Ptruck 1=Vbucket/TC1x60 = 15 / 48 x 60 = 12.50 m3/hour 
Ptruck 2=Vbucket/TC2x60 = 15 / 47 x 60 = 12.77 m3/ hour 
Ptruck 3 =Vbucket/TC3x60 = 15 / 46 x 60 = 13.04 m3/ hour 
 
The minimum number of trucks for maximum occu-
pation of the excavator for each variant without the 
influence of random factors, according to9 is: 
 
PV1 = N x Pexc 1 / Ptruck 1 = 100 / 12.5 = 8,0 => 8 
dumpers 
PV2 = N x Pexc 2 / Ptruck 2 = 120 / 12.77 = 9,4 => 10 
dumpers 
PV3 = N x Pexc 3 / Ptruck 3 = 150 / 13.04 = 11,5 => 12 
dumpers 



 
Other calculations for determining the random effects 
will be performed in the simulation software1. 
After the introduction of random values (machine 
failures) in the mathematical model, according to the 
simulation, the time of machine service extends: 
 
TN1 = 6 + 0.058 = 6.058 min.  
TN2 = 5 + 0.084 = 5.084 min.  
TN3 = 4 + 0.059 = 4.059 min. 
 
In the same way the intervals between inputs of 
elements into service will increase: 
 
TV = TV1 = TV2 = TV3 = 42 + 0.052 = 42.052 min.  
 
The total average time of the truck working cycle for 
each variant with the influence of random factors 
(failures) is equal to:  
 
TC1 = 42.052 + 6.058 = 48.11 min 
TC2 = 42.052 + 5.084 = 47.14 min 
TC3 = 42.052 + 4.059 = 46.11 min 
 
The described calculation is arranged in Tables 3, 4, 
5 for each variant. Working cycles of the excavator 
and trucks are interdependent at the service place. 
Due to the random intervals between arrivals of ve-
hicles, a queue to service will arise here. It is there-
fore possible to examine the dependences between 
the transport system and an excavator with the use 
of the theory of waiting lines9. 
 
To make the optimal choice of machinery it is neces-
sary first of all to determine other parameters of the 
queuing theory. The intensity of service is equal to: 
 
µ1 = 1 / TN1 = 1 / 6.058 = 0.1650709 min-1  
µ2 = 1 / TN2 = 1 / 5.084 = 0.1966955 min-1  
µ3 = 1 / TN3 = 1 / 4.059 = 0.2463661 min-1  
 
The intensity of the input of elements into the queu-
ing system: 
 
λ = λ1 = λ2 = λ3 = 1 / TV = 1/42.052 = 0.023780 min-1  
 
The intensity of the system operation: 
 
ρ1 = λ / µ1 = 0.023780  / 0.1650709 = 0.14405974 
ρ2 = λ / µ2 = 0.023780  / 0.1966955 = 0.12089794 
ρ3 = λ / µ3 = 0.023780  / 0.2463661 = 0.09652335 
 

 

Fig. 7. Calculation the number of units for completing 
task 

After that we will calculate the basic characteristics 
of the system. According to the calculation, that to 
fulfil the excavation Q = 7 500 m3 within up to 80 
working hours (4 800 minutes) for the first variant 11 
dumpers will be needed, the second requires 9, and 
the third requires only 8 dumpers. The initial period 
of the working cycle will be greater due to waiting in 
line for the service and will continually extend; the 
efficiency of the entire transport system with an in-
creasing number of dumpers does not grow linearly, 
see Figure 5. In the last step of selecting the optimal 
system we will focus on the assessment of the cost 
parameters for each variant. The optimal solution is 
a variant with the lowest total costs. 
Calculation of the cost characteristics of the system 
is shown in Tables 3 and 4 for each variant. In Figure 
7 the optimal set of machinery is evaluated. The 
calculation and the selection of an optimal system 
include the operational costs for the excavator and 
trucks. The total working time does not exceed 80 
working hours. 
In Table 3 it is shown that the total costs of trucks for 
the third variant are the lowest of all options and are 
equal to 664,000 CZK, respectively 89 CZK per 1 m3 
of excavation. Table 4 shows, that the total costs of 
the excavator by the first variant are the lowest of all 
and are equal to 165,000 CZK, respectively 22 CZK 
per 1 m3 of excavation. 
On the basis of 8 we choose the second variant. For 
the task fulfilment, the second variant is chosen: 
excavator with output of 120 m3/hour and 9 trucks for 
the transport of soil. 
 
 
 
 
 
 
 
 
 
 
 



Parameter Variant 1 Variant 2 Variant 3

Number of trucks, [-] 11 9 8 

Fixed costs, [CZK] 3 000 3 000 3 000 
Total fixed costs, 
[CZK] 

33 000 27 000 24 000 

Variable costs, [CZK 
/hour] 

1 000 1 000 1 000 

Total variable costs, 
[CZK] 

880 000 720 000 640 000 

Total costs, [CZK] 913 000 747 000 664 000
Costs per 1 m3 of 
excavation, [CZK /m3] 

122 100 89 

Table 3. Calculation of costs characteristics of auto 
trucks system 

 

Parameter Variant 1 Variant 2 Variant 3

Number of excava-
tors, [-] 

1 1 1 

Total fixed costs, 
[CZK] 

5 000 7 500 15 000 

Variable costs, [CZK 
/hour] 

2 000 3 000 4 000 

Total variable costs, 
[CZK] 

160 000 240 000 320 000

Total costs, [CZK] 165 000 247 500 335 000
Costs per 1 m3 of 
excavation, [CZK /m3] 

22 33 45 

Table 4. Calculation of costs characteristics of excava-
tor system 

 

Parameter Variant 1 Variant 2 Variant 3

Total costs of the auto 
trucks, [CZK] 

913 000 747 000 664 000

Total costs of the exca-
vator, [CZK] 

165 000 247 500 335 000

Total costs, [CZK] 1 078 000 994 500 999 000
Costs per 1 m3 of exca-
vation, [CZK /m3] 

144 133 134 

Table 5. Calculation of cost characteristics of the sys-
tem „excavator + auto trucks“ 
 

 

Fig.8. Calculation of cost parameters of the system 

SUMMARY AND CONCLUSIONS 

To concentrate on reducing the costs of construction 

means to avoid unnecessary delays in construction, 
as well as unnecessary additional costs due to a 
poor technology or wrong mechanization. The aim is 
to minimize these problems or even entirely elimi-
nate them. The one of the main aim of our research 
is to eliminate unnecessary delays and additional 
costs. The mathematical modelling in the special 
simulation software proved the applicability of the 
queuing theory for construction processes. In the 
case of the introduction of additional parameters into 
the system, the mathematical model will be closer to 
an actual construction process in reality. The model 
can include a variety of random factors, including 
climatic and geographic conditions. On the basis of 
the simulation results, a construction manager can 
justify a decision on choice of machinery according 
to various criteria. 
The mathematical simulation should show that some 
variants of machines combination fail to fulfil the task 
under the given conditions, and some will not be 
optimal in terms of costs or other parameters, while 
other variants will be optimal from the view of costs 
required to fulfil the construction task. The mathe-
matical simulation of the basic example showed that 
the first option fails to perform the task under the 
given conditions; the second variant proved to be 
optimal in terms of the costs of the construction task 
fulfilment. The simulation software1 allows us to look 
at the results in a graphical form or to export the data 
to other programs. The application of the queuing 
theory allows us to introduce into the system a wait-
ing time for the servicing elements and to approxi-
mate the mathematical model to a real working task 
on site. 
The application of queuing theory in the construction  
Industry is well known in the world and very wide 
and well described in the technical literature. But the 
first time, we use a mathematical modelling in the 
simulation software1. The present study demon-
strates that it is possible to model mathematically 
and technically the whole complicated construction 
process containing hundreds of constituent construc-
tion processes, with a number of simplifications, and 
then to perform various calculations and changes for 
an effective, efficient and long-term planning of con-
struction. Of course, we cannot state that our model 
is flawless and absolutely accurate. It is therefore 
important to verify the results of the study under real 
conditions. 
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