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Abstract: A theory of frame beam displacement control by active tendons is presented

in this paper . A dynamic loading is horizontal displacement of supports, such as one

occurring during an earthquake. The frame is approximated by a single-degree-of-
freedom system. The state equation is obtained from the system equation of motion.
The optimal control is applied by an integral quadratic criterion. A control numerical
example of a reinforced concrete frame, such as one of a turbo-alternators foundation,
is presented. The accelerogram of the Petrovac earthquake recorded in Montenegro is
used as base excitation. The system responses with and without control are compared.

After that , the same system responses to a rectangular pulse base excitation are
parametricaly analysed. The numerical results obtained indicate that frame seismic

vibrations can be considerably decreased by the active control.
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1. INTRODUCTION

Structural control, where structural dynamics
(Clough and Penzien, 1975) problems are analyzed
by control theory (Barnett, 1975), is a new
interdisciplinary branch of civil engineering (Domke
et at., 1981). Starting from the pioneer concept (Yao,
1972), active structural control is intensively
investigated both theoretically and experimentally
(Spencer and Sain, 1997).

A civil engineering structure starts to vibrate
when exposed to strong dynamic loading , such as

ground motion during an earthquake. The aim of
structural control, which provides the control system
attached to the structure (Fig. 1), is to reduce
unwanted structural vibrations. As well, the active
structural control demands external energy supply.

The steel frame control testing (Chung et al.,
1988) inspired the authors to analyze numericaly
an active control of a concrete foundation

This paper presents the active control by tendon

force of a frame exposed to supports motion and
gives the numerical example of a frame response to
the Petrovac earthquake recorded in Montenegro.

2. DYNAMIC MODEL

A fixed frame (Fig. 2) stiffened by two active

tendons (Chung et at., 1988) and exposed to dynamic
horizontal displacement of supports is observed. The
mass concentrated in stiff frame beam , the laterally

flexible columns and the viscous damping are
assumed. A dynamic model of the frame is a single

degree of freedom system (SDFS). For this system,

applying D'Alambert principal , the differential

equation ofmotion is:

mv(t)+cv (t)+kv(t)=-(2 cosO)u(t)-mvg(t) (1)

where : m - mass, c - damping, k - stiffness of frame, v

- relative horizontal displacement of frame beam, u -

active force in tendon, 0 - angle between tendon and

frame with real dimensions . A rectangular puts as horizon, vg
- horizontal ground acceleration, i -

dynamic base accelerattion is studied elswhere
(Furundzic and Milutinovic, 1998).

time. With Eq. (1), initial conditions are:

V(O) = v0; v(0) = vo 2)
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When the natural frequency ( w) and the damping

coefficient (4" ) are determined:

w= k l m; = c/ (2mco) (3)

from Eq. (1) follows:

v +24"wJ + w2 v = -(2m-I cos 0)u(t) - ivg
(t) (4)

The state variable x is adopted as vector:

x-C'I
Eq. (4) gives the matrix differential state equation:

i(t) = Ax( t) + Bu(t) + Gvg (1) ro'] (6)

A [_21;a -w2]B- 2m-1cosof G=(7)

0 [ 0

With Eq. (6), respecting Eqs. (2) and (5), initial

condition is:
X(0) = x0

It is easy, according to Eq. (5), to find displacement:
v(t) = Cx(t) (9)

C=[0 1] (10)

The same vibration problem is formulated first
with Eqs. (1) and (2), and than with Eqs. (6) and (8).
The frame deformation control aim is, using

measurements and feed-back (Barnett, 1975), to

reduce frame beam displacement by tendon force

dynamic change.

3. CONTROL SYSTEM

The plane frame with an active control system is

presented (Fig. 3). The control system essential parts
are: sensor, controller, and actuator.

The sensor measures the frame beam horizontal
relative displacement and velocity, which are
structural output. The controller is usually a
computer, which, applying the control algorithm,
calculates the signal of the demanded active force.
The actuator is an electro-hydraulic

servomechanism (Domke et al., 1981), which
produces the calculated active force in tendons.

4. OPTIMAL CONTROL

The frame control (Fig. 3 ) should be optimal.
This task can be, relatively simply, solved by the
linear optimal control theory applying the integral
quadratic criterion (Barnett, 1975).

The controller (Fig. 3) determines the demanded
active force ( u) on the base of frame displacement
(v) and velocity ( v ), independently from supports
acceleration ( vg ). Therefore the control algorithm is,

respecting Eqs. (6) and (8), designed for a system
with the following condition:

i(t) = Ax(t)+Bu(1 ), x(0) = x0 (11)

where x, A, B are defined with Eqs. (5) and (7),

respectively , and where active force vector u(t) has

one element u(t).
The active force u(t) should be , on the base of

measured structural response x(t) , determined so

that the scalar functional:

I(u)= j[x7Q x+uTR u]dt (12)

0

is minimal for the condition given with Eq. (11). In
Eq. (12), where the letter T stands for transposition,
the square matrices Q and R are the weighting

matrices. If matrix Q elements are taken big, then the
priority is given to decreasing of response (x), and
not to decreasing of active force (u). The opposite
stands, if matrix R elements are taken big.

In other words, according to the control theory,

the control force u(t) has to be on the base of

measured output x(t) determined so that the index

performance 1(u) defined by the integral square

criterion Eq. (12) is minimal, while the condition

(11) is fulfilled for x(t) and u(t).

The solution of problem defined with Eqs. (12)
and (11) is (Barnett, 1975) the active force:

u(t) = -R-IBTP X(t) (13)

In the control low Eq. (13) appears matrix P obtained
as the solution of matrix algebraic Riccati equation:

ATP+PA-PBR-'BTP+Q=0 (14)

Instead a tendon displacement (Chung et al.,198$),
a tendon force, as physical quantity close to
structural engineers, is used in this paper. The active
force in the tendon of frame, i.e. the control low in
feed-back, is sought in the linear form:

u(t) = k,v(t) + k2v(t) (15)

where the coefficients k, and k2 are such, that

minimal should be the functional:

(5)

(8)

I Ak

(_!^

I* (u) m.2
kv2+2 k/2

0

dt (16)

where : k- stiffness of frame , ,8- weighting factor.

Here introduced functional Eq. (16), which is
different than functional used by Chung et al. ( 1988),

may be written in another form:

I * (u) 2k I (u) (17)

where adopted novel functional is:

I(u)= J[k2v2 + /iu2
11
ldt

0

(18)

This novel functional Eq. (18) is more convenient to
use as the integral square criterion, than the
functional Eq. (16) introduced firstly. The
comparison of functionals Eqs. (12) and (18) gives
the relations:
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r0 0
]1

v
Q=[0 k2' R=[,8]; x= ; u= [uI (19)
L v

The linear form Eq. (15), but for tendon
displacement, and the functional different than Eq.
(16) were allready investigated ( Chung et al ., 1988).

The integral square criterion Eq. (18), which

presents novelty of this paper, contains two partial

goals . A compromise between vibrations and, on the

other side, demanded control force is predetermined

by giving value to factor 8. If /3 is big, the active

force is smaller, but the vibrations are bigger . If /3 is

small, the opposite stands. For /3 = oo is the case of

frame without control.
The problem of finding gains kl and k2 in Eq.

(15) is a standard problem in linear optimal control
theory (Barnett, 1975). From Eqs. (15), (18), (19)
and (14), the following optimal coefficients are

obtained:

2m-1 cos B 2m-1 cos 4
kl = Q pll ; k2 = Q P12 (20)

where pl1 and P12 are elements of the square matrix

P, which has second order and satisfies Eq. (14)

5. NUMERICAL EXAMPLE

A concrete frame machine foundation (Fig. 4)
allows easier service (Savinov, 1979). We suppose
that each transversal frame of such foundation is
diagonally stiffned by active tendons and that
foundation is exposed to horizontal earthquake in
transversal direction. The foundation middle
transversal frame (Fig. 5) with active tendons and
given geometry (Fig. 6) exposed to supports motion
due to an earthquake is observed. The active control
task is foundation vibrations reduction.

5.1 Concrete Frame

In Table I dynamic characteristics of the concrete
frame (Fig. 6) as SDFS are given . The lateral
stiffness ( k) is (Beton Kalender, 1979):

_ 12E1,. 6a +1 Ip H

k H3 3a + 2' a_I (22)s L

where : E - elasticity module of concrete , Ip/Is -

inertia moment of beam / column, H / L - height /
span of frame.

5.2 The Petrovac earthquake accelerogram

The Petrovac earthquake accelerogram (Fig. 7),
recorded on 15th April 1979 in Montenegro , had long
duration (of 28 seconds).

5.3 Control Algorithm

For the concrete frame dynamic model (Table 1),
the control algorithm is designed using the integral
square criterion Eq. (18). From measured

displacement v(t) and velocity v(t), the control

algorithm determines control force u(t) in tendons

by linear low Eq. (15), where coefficients k1 and k2

are such that functional Eq. (18) is minimal.

5.4 Displacement and Control Force Histories

The Petrovac earthquake accelerogram record is
used for the frame dynamic analyses.

Figs. 8, 9 and 10, respectively, for two values of
weighting factor /3 show history of displacement,
acceleration and active force, respectively.

The displacement history (Fig. 8) clearly indicates
that the examined systems with the active control
(/3 = 1) have smaller displacements than the system

without control (/ = oo ).

Table 2 shows not only the values of maximum

displacement (vm (t,)) and maximum active force

(umax (t„)) in tendon, followed by corresponding times
(tv and tu), but also corresponding values of the

coefficients ( k1 , k2 ) in linear control low Eq. (1).
When the weighting factor /3 decreases, then
maximum displacement also decreases, but maximum
active force increases (Fig. 10), what requires fast

change of this force.

5.5 Weighting Factor /3 Effect

For parametric analysis a rectangular pulse (Table
1), with intensity (vg =1 m/s2) equal to 1/10 of gravity

but of short duration (tg = 0,1 s ), is adopted as

horizontal acceleration of supports.
Fig. 11 shows the weighting factor /3 influence on

the ratio of natural frequency with control ( op) and
without control ((w ), as well as Fig. 12 shows the
weighting factor /3 influence on the ratio of damping

factor with control (5p) and without control (c).
It is clearly evident from Fig. 11 that the influence

of weighting factor (/3) on the ratio of natural

frequencies (wplm) is unimportant, and from Fig. 12
that the same influence on the ratio of damping

factors (Cp /^) is important.
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6. CONCLUSIONS

The active control by tendon force of frame
exposed to seismic dynamic motion of its supports is
formulated by the novel criterion Eq. (18), and the
numerical example of optimal control is presented.

The histories of displacement and active force in
tendons approve that the frame vibrations can be
distinctively reduced by the active control.

The weighting factor influence on the ratio of
damping factors is important, as it shows the
parametric analysis with a rectangular pulse.

STRUCTURE

r--------------------------- J
L-_--__--! CONTROL < ------

SYSTEM

Figure 1. Structural control scheme Figure 4. Concrete frame foundation
for turbo-alternators

Q

i g(t)
Figure 2. Frame with active tendons

Figure 3 . Frame control system,
Notation : 1- Beam , 2- Column , 3- Tendon,
4- Foundation ; S- Sensor , A/D & D/A-Converters,
µC- Controller (micro computer), A- Actuator

25 go 240 90 254

Figure 5. Transversal middle frame
of foundation [in cm]

Table I Parameters of frame dynamic model

Parameter Value Unit
Mass m =550/9,81 kN s2/m
Damping factor ^= 0,01

Stiffness of frame k =277960 kN/m
Tendon inclination angle 0= 56 (0)
Natural circluar frequency w= 70,41 rad/s
Natural period of frame T= 0,0892 s
Natural linear frequency f 11,21 Hz
Ground acceler . pulse i g = I m/s2

Pulse duration t8 = 0,1 S

Table 2 Effect of weighting factor Q

Q v,, , tv u,,,ax t„ k1/103 k2/103

- [mm] [s] [kN] s] - -
oo -0,5642 15,168 - - 0 0
1 -0,2808 11,190 -41,229 11,177 3,4608 12,435
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