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Purpose Threedimensional (3D) as-built plant models are required for various purposes, such as plant operation, 
maintenance, and the expansion of existing facilities. The as-built plant model reconstruction process consists of as-built 
plant measurement and 3D plant model reconstruction. As-built plant measurement uses 3D laser scanning technology 
to efficiently acquire data. However, the current method used for 3D as-built plant model reconstruction from laser-
scanned data is still labor-intensive. The objective of this study is to develop a fully-automated parametric reconstruction 
of the as-built pipe-line occupying a large portion of the area in an as-built plant. Method The proposed approach con-
sists of three main steps. The first step is to extract the cylindrically- formed pipelines from laser-scanned data based on 
random sampling consensus (RANSAC). The second step is to segment the extracted pipelines into pipe components, 
such as straight pipe, elbow, and branch tee, based on medial axis extraction and curve skeletonization. The last step is 
to surface-model reconstruct the segmented pipe-lines using the parametric modeling method. Results & Discussion 
The experiment was performed at an operating plant to validate the proposed method. The experimental results revealed 
that the proposed method could contribute to automation for 3D as-built plant model reconstruction. 
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INTRODUCTION 
The pipelines of a plant play an important role in the 
operation, maintenance, and expansion phases of 
existing chemical, refinery, and power plants6. Much 
equipment and instruments are connected only by 
the pipelines to perform their functions, so they play 
a role as an intermediary6, 10. Therefore, 3D as-built 
pipeline models can be used for maintenance and 
operation phases and expansion or modification of 
existing plants5, 10, 11. For example, by using 3D as-
built pipeline models for planning, expansion, and 
modification of existing plants, collisions between 
equipment can be detected3, 7. During the mainte-
nance and operation phase, 3D as-built pipeline 
models can be used for efficient inspection and part 
replacement11. 
In practice, to generate 3D as-built pipeline models, 
laser scanners are used to measure plants, and then 
users manually generate 3D as-built models from 
laser-scanned data using commercial software 
packages3. To generate 3D as-built pipeline models 
using commercial software packages, the user must 
extract laser-scanned data corresponding to each 
pipeline to be modeled in large laser-scanned data 
sets3. After extraction of laser-scanned data corre-
sponding to each pipeline, the user generates as-
built pipeline models by using some functions in 
commercial software. However, manually identifying 
each pipeline is nearly impossible and is a very time-
consuming and labor-intensive process because the 
laser-scanned data of the plant is huge and includes 

other objects such as structural components, con-
tainers, and equipment; the pipelines are also intri-
cately entwined like a net3, 7, 10. Thus, to efficiently 
generate 3D as-built pipeline models, automated 
pipeline extraction must be performed. 
Research has been done to effectively extract pipe-
lines from laser-scanned data by extracting cylinder1, 

8. Rabbani and Heuvel8 proposed a method for ex-
traction of cylinders in laser-scanned data using the 
Hough transform. Bey et al.1 proposed a method for 
extraction of cylindrical objects in laser-scanned data 
using Bayesian formulation to generate a 3D as-built 
model. Previous research shows that cylindrical 
objects can be extracted from laser-scanned data to 
generate a 3D as-built model based on extracted 
cylindrical objects. However, cylindrical objects in-
clude straight pipes as well as other objects like 
equipment. Therefore, extraction of entire pipelines 
including straight pipes, elbows, and junctions from 
laser-scanned data is still a laborious and challeng-
ing problem. 
The aim of this study is to propose a fully automated 
process that allows extraction of a 3D as-built pipe-
line for modeling from laser-scanned data. The rest 
of the paper is organized as follows. An overview 
and details of the proposed extraction process of as-
built pipeline are provided in Section 2. In Section 3, 
experimental result is provided. Finally, conclusion 
and recommendation for future research are given in 
Section 4. 
 



A PROPOSED PIPELINE EXTRACTION METHOD 
In this section, the proposed pipeline extraction pro-
cess from laser-scanned data is presented. The 
pipeline extraction for modeling method consists of 
three main steps. The first step is to segment the 
laser-scanned data of an industrial plant into subsets 
based on a smoothness constraint. The purpose of 
segmentation is to subdivide the laser-scanned data 
of an industrial plant into meaningful subsets in order 
to extract an as-built pipeline in this paper. The laser-
scanned data does not include topology information 
of objects and only contains the points with color 
information. However, an industrial plant is com-
posed of primitive-shaped objects, meaning that 
each primitive in the laser-scanned data represents 
an object. Therefore, segmentation is first performed 
based on the smoothness constraint that can seg-
ment the laser-scanned data into primitives. In this 
step, segments of the laser-scanned data are com-
puted. The second step involves classifying pipelines 
from subsets of the laser-scanned data based on 
approximating medial axis extraction, skeletonization, 
and radius calculation. The purpose of pipeline clas-
sification is to classify the segments of laser-scanned 
data into either pipeline or non-pipeline in order to 
generate the pipeline model automatically. The ap-
proximating medial axis extraction and 
skeletonization extract features from each segment. 
The result of the extracted feature can be used as 
the principal axis of an object. Pipelines of an indus-
trial plant that require the principal axis as a parame-
ter are cylindrical in shape. Therefore, pipelines can 
be classified by means of their characteristics based 
on approximating medial axis extraction, 
skeletonization, and radius calculation. The result of 
this step is the classification of an as-built pipeline 
from laser-scanned data. Finally, a 3D as-built pipe-
line model is generated using the skeleton of pipe-
line segments and their radii. 
 
Laser-scanned data segmentation 
Segmenting the laser-scanned data is performed 
using the smoothness constraint proposed by 
Rabbani et al.9. The smoothness constraint seg-
ments the laser-scanned data at the points that have 
high normal variances with neighboring points. The 
industrial plant is composed of primitive-shaped 
objects. Therefore, the laser-scanned data of an 
industrial plant can be subdivided into objects based 
on the smoothness constraint. 
The segmentation method consists of normal estima-
tion and region growing. The normal estimation is 
performed first, as the segmentation points are cal-
culated using normals of points. After normal estima-
tion, region growing is performed. Region growing 
makes groups of points that have a smooth surface 
with neighboring points using the estimated normals 
and their residuals. 

 
Normal estimation 
The segmentation method embarks on normal esti-
mation for each point. To estimate normal for each 
point, plane fitting to some neighboring points is 
performed. Neighboring points are computed for 
each point using k nearest neighbors (KNN), which 
selects the k number of points having minimum dis-
tance (Fig. 1(a)). In this paper, the nearest neighbor 
number k is set to 30 for the original study. The plane 
fitting finds the best fit plane that minimizes the sum 
of orthogonal distances from neighboring points. The 
normal of the plane is taken as the estimated normal 
for a point, and the residuals of plane fitting are tak-
en as indicator of areas of high curvature (Fig. 1(b)). 
 

 
(a) 
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Fig. 1. (a) k nearest neighbors of a point; (b) Normal 
estimation by fitting a plane 
 
Region growing 
The region growing takes as input the estimated 
point normals and their residuals. The region grow-
ing is performed with two constraints. The first con-
straint is local connectivity. The constraint means 
that the points of a segment have to be locally con-
nected. That would be enforced by using the k near-
est neighbors. The second constraint is surface 
smoothness. The constraint means that the normals’ 
variance has to be smooth. That would be enforced 



by using a threshold angle ( th ) between a seed 

point and the added points to the region of the seed 
point. 
 
The process of region growing is as follows. 
 

1. Specify a residual threshold thr . 

2. Define a smoothness threshold in terms of the 
angle between the normals of the current seed and 
its neighbors. If the smoothness angle threshold is 
expressed in radians, it can be enforced through dot 

product as follows )cos( thsp nn  . 

3. If all the points have been already segmented, go 
to step 7. Otherwise, select the point with the mini-
mum residual as the current seed. 
4. Select the neighboring points of the current seed. 
Use KNN with the specified parameters for this pur-
pose. The points that satisfy condition 2 are added to 
the current region. The points whose residuals are 

less than thr  are added to the list of potential seed 

points. 
5. If the potential seed point list is not empty, set the 
current seed to the next available seed, and go to 
step 4. 
6. Add the current region to the segmentation and go 
to step 3. 
7. Return the segmentation result. 
 
Pipeline extraction 
In order to classify a pipeline, the feature extraction 
is first performed using the approximating medial 
axis method proposed by Dey and Zhao4 and the 
skeletonization method proposed by Cao et al.2. 
Skeletonization is a suitable feature by which to 
classify pipelines, as a pipeline is cylindrical in shape, 
and the approximating medial axis is used to gener-
ate an accurate skeleton. Thereafter, a simple classi-
fication is performed based on the radius estimation 
of the points of each segment, using skeleton points 
as a principal axis. 
 
Pipeline feature extraction 
In the pipeline feature extraction, the approximating 
medial axis is performed using Voronoi diagram. The 
Voronoi diagram of the laser-scanned data is filtered 
with the angle condition and ratio condition to extract 
an approximating medial axis using its dual Delau-
nay edges from the Delaunay triangulation of the 
sample points. 

Angle condition   can be described as follows: 
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Where p  and q  are sample points of input data; 

pU  is an umbrella that is extracted from Delaunay 

triangulation; pqt  is a tangent vector from p  to q ; 

and ptun  is a normal to a triangle ptu . Ratio condi-

tion   can be described as follows: 
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Where ptuR  is the circumradius of a triangle. 

After filtering, the Delaunay edges remaining are 
only those that satisfy both conditions. The remain-
ing set of Voronoi facets from the Voronoi diagram 
creates the approximating medial axis4. 
After performing the approximating medial axis, 
skeletonization is performed. The skeletonization 
algorithm takes as input the vertices of the result of 
the previous step. The algorithm embarks on the 
geometric contraction of the vertices based on im-
plicit Laplacian smoothing, which removes details of 
the input data along the normal directions. The algo-
rithm automatically chooses some anchor points to 
maintain the original shape of input data during the 
contraction. After the contraction process, the skele-
tal shape of the input data remains the result. 
The geometric contraction first constructs a one-ring 
structure for all vertices. It is needed to use the 
Laplacian matrix to compute the normal direction of 
the vertices. To define one-ring neighbors, therefore, 
an approximate neighborhood of the vertex as a 

point ip  is extracted by finding k  nearest neighbors 

and projecting the neighbors on its tangent 
plane.The contraction process can be described as 
follows. Assume that the following equation is solved 

for 
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Where superscript t  is used to denote the t -th itera-

tion; L  is a nn  Laplacian matrix with cotangent 

weights; P  is the input data; and LW  and HW  are 

the diagonal weight matrices balancing the contrac-
tion and attraction forces. Then, the diagonal weight 

matrices 
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are updated, where 
t
iS  and 

0
iS  are the current and 

original neighborhood extents of point ip , respec-

tively. Finally, the new Laplacian matrix 
1tL  is con-

structed with the new point cloud 
1tP . The contrac-

tion process stops when the solution converges. The 

input data becomes a skeletal shape C . The result 



of geometric contraction is not a 1D curve skeleton. 
Further steps are required to extract the 1D curve 
skeleton. The 1D curve skeleton is extracted by 
imposing an initial connectivity and computing edge 
contraction. 
 
Pipeline classification 
The pipeline classification method takes as inputs 
the segments and 1D curve skeletons of each seg-
ment. To classify pipelines, the distance from the 1D 
curve skeleton points to the surface points is com-
puted for each segment. The surface points of a 
skeleton point are selected using k nearest neigh-
bors. The nearest neighbor number k is set to 30. 
The radius of a segment is defined as the average 
distance from skeleton points to the segment surface, 
and standard deviations of the distances are com-
puted for each segment. The classification is per-
formed with the radii of segments and the standard 
deviations. The pipelines are roughly extracted using 

the radii of segments with a threshold ( thd ) that 

defines the boundary between the minimum diame-
ter of a pipe and the maximum diameter of a pipe. 
Finally, the pipeline is extracted to remove the seg-
ments that have a high standard deviation. 
 
Skeleton based pipeline model generation 
Once the skeleton points of extracted pipeline seg-
ments and their corresponding radii are obtained, the 
pipeline model is simply generated automatically by 
the parameters. The pipeline model is also classified 
by type of pipe components such as elbows, T-
junctions, and straight pipes using the degree varia-
tion of skeleton points. 
 
EXPERIMENTAL RESULT 
In this study, the performance of the proposed pipe-
line extraction for modeling from laser-scanned data 
was tested on actual laser-scanned data. The result 
of the test is shown in Fig. 2. Fig. 2(a) shows a laser-
scanned data acquired from an operating industrial 
plant and Fig. 2(b) shows the result of segmentation 
based on smoothness constraint. The segmentation 
result shows that most segments, which are dis-
played using various colors, represent each object. 
Fig. 2(c) shows extracted pipeline and Fig. 2(d) 
shows the pipeline model. In Fig. 2(d), the gray-
colored models denote the models of straight pipes, 
the green-colored models denote the models of el-
bows, and the red-colored models denote T-junction. 

The threshold angle ( th ) was set to 15 ° for the 

original study and thr  was calculated by the 
th98  

percentile of the residuals for segmentation. The 

threshold ( thd ) was set to 2–10 inches for the diam-

eters that were used for this industrial plant in the 
scene. 
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Fig. 2. Result of pipeline extraction and model genera-
tion; (a) Laser-scanned data; (b) Segmented laser-
scanned data; (c) Extracted pipeline; (d) Generated 
pipeline model 
 
The proposed pipeline extraction method was vali-
dated for precision rate, and the result is presented 
in Table 1. The precision rate shows that the per-
centage of extracted pipelines is calculated as the 
number of true pipelines over detected pipelines. It is 
observed that the precision rate of pipeline was 
93.33%. Based on the experimental result, it can be 
concluded that the proposed method can be used to 
accurately extract the as-built pipeline for modeling 
by means of the automated process. The result 
shows a high precision rate, but the error occurred in 
incomplete data part due to occlusion or other visibil-
ity issues during acquiring laser-scanned data. The 
incomplete data leads to an under- or over-
segmentation problem and that is the cause of the 
error. 
 
Table 1. Performance of the proposed extraction meth-
od 

 Detected 
Objects 

True Ob-
jects 

Precision 
rate 

Pipelines 15 14 93.33% 

 
CONCLUSION 
This paper proposes a new method that can auto-
matically extract an as-built pipeline for modeling 
from laser-scanned data. The segmentation of the 
pipelines is performed by the smoothness constraint. 
The segments of laser-scanned data are then classi-
fied into either pipeline or non-pipeline using medial 
axis extraction, skeletonization, and radius calcula-
tion. The pipeline model is simply generated based 
on the skeleton points of extracted pipeline seg-
ments and their corresponding radii. The feasibility of 
the proposed method was demonstrated in an exper-
iment using real laser-scanned data obtained from 
an operating industrial plant. The result shows that 
the proposed method can successfully extract the 
3D as-built pipelines for modeling. The proposed 

method is advantageous as it extracts pipeline and 
generates a model automatically. Thus, it could be 
successfully incorporated into the development of 
as-built plant information modeling. Nevertheless, 
the proposed pipeline extraction method for model-
ing has a limitation that may extract objects instead 
of pipelines because of incomplete data. In order to 
extract the entire pipeline without errors, complete 
data is required, which does not contain holes. 
Therefore, future research should focus on the re-
construction of the incomplete laser-scanned data 
acquired from an industrial plant. 
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