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Purpose This paper presents a new automated method to predict condition state rating in bridge inspection. The method 
is designed to identify proper risk-based inspection interval by neural networks and image processing techniques. Meth-
od The surface defect considered in this research work is the loss of surface portion (scaling) of concrete due to freeze-
thaw action based on Ontario Structure Inspection Manual (OSIM). Earlier, digital camera has been effectively used for 
identification of cracks in concrete bridge inspection. The research presented in this paper uses digital camera and artifi-
cial neural networks (ANN) for defects identification and rating purposes. The problem associated with scale calibration 
while zooming of the camera to capture the details of defects is solved either by known dimension of existing nearby 
element s of the bridge or via artificial objects with known dimensions in the picture frame. Determination of depth of 
defects, however, poses another challenge when 2D picture frames are used in this process. Red, green and blue (RGB) 
color profile is used to estimate the depth of defects. Various image processing techniques are used to extract the fea-
ture vectors to characterise and quantify defects. Subsequently, an ANN model is developed to predict the depth of de-
fects based on 7 attributes obtained from the image processing. Condition state rating of scaling defects is then modelled 
using a developed back propagation neural network model (BPNN). Results & Discussion The developed model is 
capable of predicting condition state (CS) rating of scaling defects as light, medium, and severe with correlation coeffi-
cient (CR) of 99%. The proposed method is aimed to identify the proper risk-based bridge inspection interval which can 
significantly shorten the inspection interval and can assist in planning and executing necessary maintenance and rehabil-
itation work.      
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INTRODUCTION 
Bridges built during the boom period of infrastructure 
construction in the sixties and seventies are still in 
operation today. In Canada, more than 40% of the 
bridges currently in use were built over 50 years 
ago1. The situation is not different in rest of the 
world. In the the United States, there are 565 thou-
sands bridges, and more than 70% of them were 
built prior to 19352. The aging bridges are in need of 
immediate upgrade or renewal. In many cases, 
maintenance and rehabilitation actions are driven by 
crisis or disasters when funds are limited. This ap-
proach is not suitable for bridge management when 
most of the infrastructure has reached the design 
service life3. Therefore, Bridge Management System 
(BMS) is developed to help in planning maintenance 
and rehabilitation actions to avoid crisis based man-
agement4,5. For example, PONTIS has become a 
national standard for bridge management which has 
been adopted by the departments of transportation 
(DOT) in more than 40 jurisdictions in the United 
States6. However, the reliability of the predicted re-
sults of BMS is highly dependent of the quality of 
inspection data. Many of the bridges in U.S. are 
required to be inspected once in every two years7. 

Traditionally, inspections are based on visual obser-
vations which lack adequate quantitative data for 
bridge condition evaluation. Risk-based bridge 
maintenance strategies and optimal inspection inter-
vals are needed for proper utilization of available 
fund to maintain proper safety level to bridge struc-
tures8,9. This method needs to proper identification 
and quantification of defects to assist risk-based 
BMS. The focus of this research is to support the 
risk-based BMS by developing an automated dam-
age prediction method by analyzing the surface de-
fects of bridges and of condition rating of concrete 
bridges surface defects. 
 
BACKGROUND 
The I-35 W Mississippi River Bridge was inspected 
one year before the collapse in August 200710. The 
bridge was built in 1964 and rated 4 out of 9 which 
could be operated without load restrictions10. The 
investigations imply that the condition of such defi-
cient bridges in the country may be worse than what 
officials have predicted10. This draws serious atten-
tion towards proper inspection strategies for efficient 
bridge management. In 1990 Hachem11 had used 
the sufficiency ratio as one of the scheduling inspec-



tion parameter to determine the inspection interval. 
Wirsching and Torng (1989)12 used reliability analysis 
to find the inspection intervals of marine structures. 
Liu and Frangopol13 pointed that the BMS software 
does not consider environmental factors, material 
prices, geographical factors, and design parameters. 
This leads to uncertainty about the result of BMS to 
determine schedule for maintenance and rehabilita-
tion. Liu in 200814 studied 69 collapsed bridges in the 
U.S. after 1967. The data showed that more than 
50% bridges were collapsed due to collisions and 
natural disasters. These phenomenons are difficult to 
capture and to incorporate into BMS to get better 
results. In the past, a wide range of construction 
materials had been used for bridge construction. 
Therefore, it is difficult to establish a common in-
spection interval for bridges. One way to tackle this 
problem is to revise the inspection frequency based 
on risk-based management strategies. Since bridge 
monitoring and inspection are expensive, there is a 
need for developing automated bridge inspection 
systems.  
Currently, some bridges use electronic sensors to 
constantly monitor bridges condition. Bagchi et al. 
(2007)15 developed a model for damage detection 
based on vibration of structures. Close-range photo-
grammetric and Non-Destructive Test (NDT) are 
widely being used in bridge monitoring and evalua-
tion. In 1849, Laussedat first utilized terrestrial pho-
tographs to compile maps and later was recognized 
as the “father of photogrammetry”16. Photogramme-
try has been successfully used in identification of 
bridge length, width, lateral and vertical clearance 
and also documentation of historical monuments17. 
An automatic bridge condition evaluation system 
based on LiDAR (Light Detection and Ranging) is 
developed by Liu14. The above methods use ad-
vance tools and sensors and may be applicable for 
major rehabilitation works. There is a need to devel-
op a procedure which can accelerate the primary 
inspection process and enhance the output of exist-
ing BMS. Existing BMS uses experts for condition 
rating based on inspection report. Abudayyeh et at. 
20043 have proposed a framework for automated 
bridge imaging system which stores different surface 
defects, but the condition rating is assigned by ex-
pert through viewing the defects on monitors. Hence, 
an automation condition rating system needs to be 
developed that can be connected with any BMS 
database. In this paper, for automation, ANN has 
been used for prediction of condition rating of de-
fects based on analysis of digital photographs. 
Moselhi and Shehab-Eldeen (2000)18 used image 
processing and neural networks to automatically 
detect and classify defects in sewer pipes. As re-
ported by authors, the accuracy rate of proposed 
algorithm is 98.2%. Khan et al. (2010)19 also used 
neural networks to analyze structural behavior of 

sewer pipes in terms of variation of condition rating. 
The reported success rate was 92.3%. 
 
METHODOLOGY 
In the 2011 Annual report of the office of the Auditor 
General of Ontario, a risk-based approach for moni-
toring the inspection for infrastructure has been rec-
ommended20. The approach requires following up 
any unusual changes in a bridge’s condition since 
the previous inspection and identification of high-risk 
bridges. Once maintenance is performed, then risk 
and age associated with the bridge also change11. 
This paper does not discuss the risk-based ranking 
of bridges, but recognizes that the risk of bridges 
depends on unit cost of repair which is evaluated 
form quantity measurement of defects. An automat-
ed procedure is proposed for quantification of scaling 
the defects based on Ontario Structure Inspection 
Manual (OSIM) and condition state rating of bridge 
elements as shown in Fig. 1. This approach as-
sumes no prior database information about bridge 
surface defects. The methodology consists of three 
major components: data acquisition, attributes ex-
traction (image processing), and neural networks 
models. The following paragraphs describe each 
component in detail. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1. Research Methodology 

Data Acquisition 
A commercially available SONY-DSC T5 digital cam-
era of 5.1 mega pixels with optical zoom 3x has 
been used here for data collection of bridge surface 
defects. For surface defect identification, close-range 
photographs are required with proper focus on de-

Data Acquisition 
(Camera) 

Feature Extraction  
(Image Processing) 

BPNN 
Model 

 
Information Model -a 

(Depth Prediction) 

Information Model -b 
(CS Prediction) Model Training & 

Testing 

Model 
Validation 

Contribution Factor 
ranking 

Model Training 
& Testing 

 

Model 
Validation 

Condition rating 



tails of defects. However, just taking random photo-
graphs are not much of our interests. So, each pho-
tograph frames must include either natural or artifi-
cial targets for calibrating the scale. In general, natu-
ral targets can include structural details of beams, 
columns, parapet walls and railings, patches on 
concrete and steel surfaces, and nuts or bolts on 
girders. When there is insufficient natural targets, 
artificial targets are to be used. The artificial target 
used in the present research consists 5 cents coin 
placed in the vicinity of defects. Fig. 2 shows an 
example of artificial target placed in the picture 
frame. 

 
Fig.2. Use of Artificial Target for Scale Calibration 

Image Processing 
ImageJ22, commercial software for image analysis, 
was used to extract feature vectors of defects attrib-
utes. The general methodology for feature extraction 
is shown in Fig. 3. Images are loaded to imageJ 
software and preprocessed using a a series of steps 
to enhance the image for further processing. These 
enhancements include image smoothing, image 
sharpening, contrast modification, and histogram 
modification. The attributes of a feature vector con-
sidered in this work are area, perimeter, and the 
lengths of the major and axes, aspect ratio, round-
ness, and depth as shown in Fig. 3. The first six 
attributes are obtained by selecting the defects, and 
setting the scale in software to convert pixel value to 
actual measurement. But for the estimation of depth, 
a different approach that uses the RGB color profiles 
is required.  
 
Use of Low Pass Filter: To reduce the effect of high 
frequency components, low pass filter such as, 
Gaussian Blur can be used. In this work, the similar 
effect is produced from line selection tool of ImageJ. 
The width of selection line has been magnified 150 
times the default mode until the edge can be detect-
ed clearly (Fig. 4). The digital data are extracted in 
MATLAB and processed further to find the difference 
in average color intensity at desired locations.  
 
Relationship between the difference in intensity 
(DIB) and the depth of a crack: The relationship 
between DIB and depth of defects is developed by 

taking actual field measurements. The resultant 
approximation can be expressed by 

td = K * DIB                                (1) 

Where, td the depth of a defect in mm, and K is the 
slope of the line plotted in Fig. 5. The value of K is 
obtained by taking the first derivative of equation (1) 
which is found to be 1.0253. The result shows that 
depth prediction error varies from 5 to 15% as com-
pared to actual measurement depending on the 
presence of dirt in defected area, wet surface or 
exposed reinforcements. In many cases, the esti-
mated depth is highly dependent on the color intensi-
ty at the detected edge.  
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Fig.3. Attributes feature Extraction 

 
Fig.4. RGB Color Profiles for Depth Estimation 

 
BPNN Models 
A back propagation neural networks (BPNN) has 
been developed to model the relationship between 
the depth and condition rating of structural elements. 
The following two models have been constructed: 
Model ‘a’ to predict depth, and Model ‘b’ to predict 
condition rating, as discussed above. While both 
models are similar, Model ‘b’ contains an additional 
attribute of depth input variable in the data pattern to 
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predict condition state (CS) rating of defects in 
bridge elements based on the severity of observed 
defects. The neural networks modeling process is 
shown in Fig. 6. The above models have been im-
plemented using a commercial software namely 
Neuroshell 221.  
 

 

Fig.5: Relation between different in Intensity and 
Depth in mm 
 
Table1. Description of Condition State Rating 

Defects 
Condition State Rating 

Light (1) Medium (2) Severe (3) 

Scaling 

Local Flaking/Loss of Surface Portion of Concrete or 
Mortar due to Freeze or Thaw 

Up to 5mm 
Depth 

6-10 mm Depth > 10mm Depth 

 
Data Collection and pre-preprocessing 
Data are collected from bridges located in Montreal, 
Quebec, Canada. Digital photographs are taken from 
close range so that the defects are magnified. Condi-
tion rating grades are adopted from Ontario Struc-
ture Inspection Manual (OSIM)23 where condition 
state rating of 1 indicates light damage and 3 indi-
cates severe damage. Table 1 summarizes the con-
dition state rating grades mentioned in OSIM.  

 
 
 

 

 

 

 

 

 

 

Fig.6. Neural Networks Modeling Process 

The input data used in the BPNN models have been 
normalized (between 0 and 1) using the following 
equation (Eq.  2). 

 
                X ni =(Xi–Xmin)/(Xmax–Xmin)                        (2)   
 
where Xni is the normalized value of Xi; Xi is the ith 
value of a data series X representing the raw data; 
Xmin is the minimum value of X in the sample set; and 
Xmax is the maximum value of X in the sample set. 
 
Training of the BPNN 
The network architecture is adopted from Neuroshell 
2, 199621 online documentation manual shown in 
Fig. 7. The network consists of five layers of neurons 
with one input layer (the number of input neurons are 
equal to number of attributes in each pattern), 3 
hidden layers, and one output layer (the number of 
output neuron is one). A total of 19 data patterns 
have been prepared using the image analysis pro-
cess which consists of 60% training sets, 20% test-
ing sets, and 20% validation sets. Validation data set 
is also called the production set. The production set 
of data, which is not presented to the network during 
training, is later used to validate the model.  

 
Fig.7. Architecture of BPNN (Source: Neuroshell 2) 

 
Table.2. Performance of Model-a 

Patterns processed 19  

R squared 0.7024 

r squared .7990  

Mean squared error 0.028 

Mean absolute error 0.147  

Min. absolute error 0 

Max. Absolute error 0.278  

Correlation coefficient r 0.8939  

 
Table.3. Performance of Model-b 

Patterns processed 19  

R squared 0.9807  

r squared 0.9839  

Mean squared error 0.003 

Mean absolute error 0.032  

Min. absolute error 0.000 

Max. Absolute error 0.167 

Correlation coefficient r 0.9919  
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RESULTS 
The accuracy of the developed models is evaluated 
by applying validation sets data to the models. The 
validation sets of data are not exposed to the models 
during the training and testing of the models. After 
applying these sets of data, various statistical pa-
rameters are obtained to measure the accuracy of 
prediction of CS rating. The statistical features of the 
trained BPNN models are shown in Tables 2 and 3. 
To measure the importance of an input variable in 
the neural networks output relative to the other input 
variables in the same network, a parameter called 
the contribution factor (CF) used in Neuroshell 221. A 
large value of CF of a variable will indicate that it 
contributes more to the output than other input vari-
ables. However, a variable having a low value of CF 
does not mean that it shall be excluded from the 
model. The values of CF obtained for both the mod-
els are shown in Tables 4 and 5. 
 
Table.4. Contribution Factors – (Model-a) 

Rank-
ing 

Parameter CF 

1 Length of Major Axis 27.6% 

2 Area 23.8% 

3 Length of Minor Axis 19.6% 

4 Aspect Ratio 12.2% 

5 Perimeter 9.9% 

6 Roundness 6.7% 

 
Table.5. Contribution Factors – (Model-b) 

 
 
 
 
 
 
 
 
 
 
 

A comparison of the estimated output given by the 
BPNN model and the actual one for all data points of 
both models is presented in Fig 8. In Fig.9, the actu-
al condition state is first obtained after evaluating the 
depth information from the first model and plotted 
against all the 19 patterns. Then Model ‘b’ is used to 
predict the condition state rating and validated by 
using the production sets. The results are summa-
rized in Table 3.    
 
APPLICATION AND LIMITATION OF THE DEVELOPED 
MODELS 
The BPNN models developed here have designed 
by using Neuroshell 2 software. The trained model 
can be used to predict (a) the depth of cracks or 

defects on concrete bridge surfaces, and trained (b) 
the condition state rating of concrete bridge mem-
bers. The trained models work in same way as ex-
perts classify and predict the attributes of defects 
based on their experience. The procedure can re-
duce the inspection time as the inspector needs only 
to take appropriate photographs, and analyze them 
using the proposed methods. With this application, 
the frequency of inspection can be increased without 
additional burden to client and hence could be pos-
sible to capture risk associated with environments 
and extreme loadings. Additionally, the efficiency of 
existing BMSs can be improved after integrating this 
model with any BMS like PONTIS. The risk associ-
ated with the changes in the condition of various 
elements or members in a bridge can be potentially 
assessed using the proposed methods which may 
help in making appropriate decisions for mainte-
nance and rehabilitation actions. The proposed 
method will be helpful to track and record these 
events in proper time with less cost. 
 

 
Fig.8. Prediction of Actual Depth Vs Model Output 

 
 

 
Fig.9. Prediction of Actual Condition State Rating Vs 
Model Output 
 
However, the developed models have their limita-
tions. A close range digital photographs are required 
for defect identification which needs zooming capa-
bility of cameras. This method also requires a refer-
ence object of known dimension such as known 
dimension in the picture frame for calibrating the 
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scale. The changes in an attribute of a defect attrib-
ute depend upon location and weather conditions 
such as, temperature, moisture and lighting, and the 
developed models need corresponding reference 
conditions for calibration. More importantly, sufficient 
numbers of input data patterns are necessary to 
have better training and prediction capabilities. For 
better prediction capability, a robust database is 
required. 
 
CONCLUSION  
Inspection report is the major source of data for input 
to any BMS for maintenance and rehabilitation activi-
ties. Traditionally visual inspection, which is the pri-
mary method in use, is slow and expensive. In this 
research, machine vision techniques are used for 
automated prediction of condition rating and depth of 
defects. This approach utilizes digital photographs 
and neural networks to build data models which 
have many advantages as compared to traditional 
inspection. It uses non-contact techniques which is 
applicable to inspection in the areas which are not 
readily inaccessible. Also, it can quantify a large 
amount of geometric information in a short time with 
the help of digital image processing. Hence, it can be 
used as a tool for routine bridge inspection. There 
are several examples of photogrammetric identifica-
tion and deformation measurement in bridge ele-
ments. Model ‘a’ demonstrates the prediction capa-
bility of depth of scaling defects where as Model ‘b’ 
shows the prediction capability of condition state 
rating of bridge surface defects. The results show 
that the length of major axis has the highest contri-
bution factor for depth prediction and the depth of 
defects has the highest CF for prediction of condition 
rating of bridge elements. The success rate in the 
first case is 89% and that in the second case is 99%. 
Since the proposed method is fast and less expen-
sive, the frequency of inspection can be significantly 
increased to provide additional safety to bridges by 
recognizing the effect of extreme loadings. Hence, it 
can be used as a tool for determination of risk-based 
inspection interval which requires proper quantifica-
tion of bridge defects.    
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