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Abstract
A critical problem in dynamic environments and especially on construction

sites is coordinating the use of limited space to accommodate resources and their
changing demand for space over time. This paper presents a heuristic model that
allocates site space to resources associated with an activity schedule so that no
spatial conflicts would arise and all resources can be functional. It addresses the
dynamic layout planning problem, which involves creating a sequence of layouts
that span the duration of construction of a project, given the schedule with
activity resources and the timing of their presence on site. The MoveSchedule
model, presented here, characterizes changing resource space needs over time
and uses a heuristic procedure to automatically construct a dynamic layout while
allowing space reuse.

1. INTRODUCTION

Laying out temporary facilities on site is often done manually by marking up
a site drawing to show different overlapping laydown areas that will be present
for consecutive time frames. This typically results in a complicated drawing that
can be interpreted only by the one who made it and that is virtually impossible to
update as construction progresses [4]. Computer tools with graphical simulation
(e.g., walk-through-like systems) can clearly assist in this process, though few
algorithms exist for them to automatically create a desirable sequence of layouts.

Most layout construction algorithms pertain to static layouts, i.e., layouts that
span a single time interval during which all resources require space. They
generate solutions that are near-optimal in terms of a heuristic score based on
adjacency and location requirements of work groups. Typically, users then
custom-tailor those solutions using manual editing tools to make them suit the
actual problem requirements.

The process of creating a sequence of layouts to span the duration of
construction of a project when given the activity schedule is referred to as
dynamic layout construction. Each individual layout in the sequence must span a
specific time interval and accommodate the resources that are scheduled to be
present during this interval.

Few models for dynamic layout construction exist, but research is under way
to capture modeling data and some models are under development. For example,
[2] argues for improved site materials management and focuses on field data
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acquisition. Others (e.g., [3]) use CAD-models to generate and quantify space
availability of a process work area, which can serve as input to systems that
incorporate space as a constraint in their scheduling procedures. MovePlan [5] is
an interactive dynamic layout planning tool that enables users to create layouts
for different time intervals, given an activity schedule and associated resources,
by providing them with resource templates and a work sheet to graphically
manipulate those templates.

The MoveSchedule system, presented here, automates dynamic layout
construction. Its underlying model characterizes space requirements of resources
and the variation of these requirements over time using different space profiles.
The model uses location constraints to construct feasible layouts, and proximity
and relocation weights to measure the quality of those layouts. MoveSchedule's
heuristic dynamic layout construction procedure allows space reuse by resources
over time and accounts for changes in resource space needs over time. An
example illustrates the applicability and limitations of the procedure.

2. SPACE-TIME CHARACTERIZATION OF RESOURCES

2.1. Discretizing Time
MoveSchedule represents time in discrete intervals that are based on the

arrival and departure of resources which may or may not be associated with
activities. Resources not associated with activities are termed independent; the
timing of their presence on site is user input. Resources associated with
activities, termed dependent, are on site as defined by the activity schedule. The
smallest intervals delimited by the (dis-)appearance of independent resources or
the start/finish of activities are termed Primary Time Frames (PTFs).

2.2. Resources Space Profiles
All resources in MoveSchedule are modeled as rectangles to be positioned at

0° or 90° orientation. MoveSchedule offers four alternate space profiles (Fig. 1)
for the user to choose from while modeling the resources' space requirements and
the variations of these requirements over time. These profiles constitute the
basic building blocks from which more complex profiles can be built.
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Figure l.a. Profile-A Figure l.b. Profile-B Figure l.c. Profile-C and
Profile-D

The area required by a resource at any one time is inferred from the
resource's space profile. For profile-A and profile-B, the resource is assigned to a
single activity but its area varies over the duration of that activity. The dimen-
sions of the resource are computed using the profile at a given. point in time and
a user-defined length-to-width ratio (L/W) for the resource. For profile-C and
profile-D, the resource dimensions L and W are user defined and fixed over the
entire time interval (TB) over which the resource exists. Profile-C models the
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space required over TB, computed by MoveSchedule to extend from the start of
the earliest activity to the finish of the last activity to which the resource is

assigned . Profile-D models the space required by a resource on site for a user-

defined value of TB.
Examples of resources that can be modeled with profile-A or profile-B are

construction materials that get consumed as the corresponding activity
progresses . Profile-C can model construction equipment that is used in multiple
activities and that is possibly idle in-between uses. Profile-D typically models
Independent resources, such as obstacles on site, construction support facilities
(e.g., trailers or parking lots), or resources that exist on site for a given phase of
construction (e.g., a tower crane).

2.3. Resource Preferences and Hard Constraints
Two types of constraints drive the construction of the dynamic layout.

Preference constraints reflect user-defined proximity and relocation weights that

gauge the quality of the constructed layouts. A proximity weight applies to a pair

of resources and measures the level of interaction based on distance between
them in a given time interval. Proximity weights have a discrete value set of (0,
25, 75, 100). A value of 100 means that the two resources have a high level of
interaction and the distance between them should be small. The inverse is true

for a value of 0. A relocation weight applies to an individual resource and

measures the penalty for relocating the resource across time intervals. Relocation

weights have a discrete value set of (0, 25, 75, 100, + oo). The value 0 implies that
the resource can easily be relocated, i.e., the cost of relocating it is negligible. In

contrast, the value + oo implies that the resource should not be relocated across
layouts because the cost of doing so is prohibitive; if such a resource has different
positions in different layouts, the layout sequence is considered to be infeasible.
Resources that have a relocation weight of infinity are termed non-relocatable.

Hard constraints are user-defined 2-dimensional geometric constraints
between two resources that MoveSchedule uses to prune the Set of Possible

Positions (SPP) of a resource to possibly one or no position. In the latter case, the
layout is infeasible. Examples are non-overlap,. in-zone, minimum-distance,
maximum-distance, and orientation constraints. Non-overlap constraints apply
by default but can be user-overridden by defining in-zone constraints between
resources. A minimum (maximum) distance constraint limits the distance
between the facing sides of two resources in the X or Y direction, to be greater
than (less-) a user-defined value. An orientation constraint may specify that
resource i be to the north (south, east, or west) of resource j.

2.4. Constraint Satisfaction Engine
MoveSchedule's hard constraints are built on top of the GS2D constraint

engine [1]. GS2D satisfies geometric constraints between rectangles (resources)
in a 2-dimensional coordinate system using a bounded interval representation.
Each resource's set of possible positions is described by a set of rectangles
parallel to the X-Y coordinate axes, representing possible positions of its center
point at 0° and 90° orientation. As spatial constraints are applied to resources,
GS2D reads their original sets of positions and returns a pair of modified sets,
each resource's position set having been pruned to include only those positions
consistent with the applied constraint.
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3. DYNAMIC LAYOUT PROCEDURE

The dynamic layout construction procedure prioritizes: (1) resources that
should not be relocated across layouts, and (2) all other resources. It comprises
two stages. In the first stage, the sets of possible positions of non-relocatable
resources are pruned to ensure that spatial constraints with other resources on
site are met at all times. In the second stage, the procedure identifies the points
in time based on the activity schedule where demand for site space changes, and
uses linear programming to construct individual layouts for the PTFs delimited
by these points in time. The solution of this linear program is a refinement of the
sets of possible positions of resources in each PTF, while minimizing the objective
function that penalizes total travel distance of resources and weighted for the
duration of the PTFs. A single position for each resource is then sampled from
the refined set of positions.

The value of the sequence of layouts that results from this procedure and that
covers the entire duration of the construction schedule, is gauged in terms of the
weighted travel distance in each PTF layout plus the cost to relocate resources
from one PTF to the next. The second stage of the procedure is described next,
and is followed by the first.

3.1. Pruning Positions to Meet Preference Constraints
The objective function (VFL) that assesses the quality of the dynamic layout

consists of two components, P and R. P measures the sum of costs or penalties
associated with travel distances between interacting resources for all PTF
layouts. R measures the sum of costs associated with relocating resources across
PTF layouts. The following equations are used to compute VFL = P + R:

P = JPt W dt At and R R t (t - 1) W'i d;; -1)tii ii
t i

Where: W : Proximity weight between resources i and j in layout t
W'i : Relocation weight of resource i

V-j1)t: Rectilinear distance between centroids of resources i
in layout (t - 1) and resource j in layout t

A t : Length of time interval over which layout t extends

This objective function is minimized to prune the SPP of a resource i to satisfy
its preference constraints, but this is done only after all hard constraints on this
resource have been met.

Thus, the objective in the second phase of dynamic layout construction is to
find the position or reduced set of positions of resource i in a layout t that
minimize(s) VFL. Let t be the layout in which a position for resource i is sought,
SPPit the set of possible positions of i, n the number of resources in t for which a
position was selected, and layout t-1 the layout for the preceding PTF. This
problem is formulated as a linear program as shown on the next page.

This problem is separable and can be formulated as two linear programs for
each rectangular subset of SPPit, also shown on the next page. Linear programs

(I) and (II) are solved independently to get the values of Xit and Yit. The solution
of (I) lies at one of the points: LB, UB, or hk; and that of (II) at: LB', UB', or h'k.
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n

Min JWt At(IX;-X^I+IY; -YtI) + W'; (I '-Xi11+IYt-Y; l I)

1

ST LBm <_ Xi <_ UBm ; m is the number of rectangles in SPP1

LB'm <_ Y; < UBm ; Xi , Yi , UB, UB', LB, LB' >_ 0

Where: Xt, Yl : x and y coordinates of the centroid of resource i
1 SPPt

I

UB, LB : upper and lower bound on the x -Dim. of a rectang e in

UB , LB': upper and lower bound on the y - Dim. of a rectangle in SPPt.

MinjCk I X, - hk) MinIC'k I- h'kl
k

ST LBm <_ X; <_ UBm (II ST kLB'm Y; < UB'm

Xi, Yl , UB ,LB, UB', LB', Ck, C'k , hk, h'k > 0

Where: Ck, hk, C'k, and h'k are positive constants

3.2. Dynamic Layout Construction
The dynamic layout construction procedure starts by generating the activity

schedule and identifying PTFs. No changes to the schedule are allowed from this
stage on. The procedure goes through the following steps:
1. For each PTF, check if fixed-position independent resources can be positioned

on site without overlapping. If for any PTF this check fails, then the problem
is declared infeasible and the user is asked to make revisions to the input

data.
2. Let *non-relocatables* be the set of non-relocatable resources ordered by the

date of the resource appearance on site. If *non-relocatables* is empty then go
to 100, else select the first resource in this set (R). Let R-time-bound be the

time interval over which R is needed on site. Define Current Time Bound

(CTB) as the smallest time interval that includes the time intervals of
resources in *non-relocatables* which overlap with R-time-bound and with
each other. Other CTBs are computed by redefining the set *non-
relocatables* to exclude R and the non-relocatable resources present in the

previous CTB.
3. Find all resources needed in CTB. Position those with fixed position and

update the SPP of the remaining resources to reflect this.
4. Satisfy all hard constraints between resources found in (3) and prune their

SPPs accordingly. If the SPP of any of these resources is empty, then the
problem is declared infeasible and user intervention is required.

5. Check if there exists any PTF preceding CTB for which no layout was
constructed yet. If one or more exist, then fire PTF-Layout Construction
operator on each. Process the PTFs sequentially.

6. Identify all the PTFs included in CTB and fire the PTF-Layout Construction
operator on each. Process the PTFs sequentially.
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3.3. PTF-Layout Construction Operator
To construct the layout of a PTF--i-j, the PTF -layout construction operatorruns X number of trials (X can be set to any number ) to generate at most X sets

of compatible sampled positions for the resources present in PTF-i-j. These sets
are then evaluated using the equation for VFL and the resources are bound to
the positions of the set that minimizes VFL.
7. Set counter = 0 (counter will keep track of the number of sampled sets).
8. Set counter = counter + 1
9. Let temporary - list be the list of all resources needed in PTF-i-j.
10. Position resources in temporary-list that have fixed positions , and positionthe non -relocatable resources that were positioned in previous time frames.

Remove these resources from temporary-list.
11. Let r be the resource in temporary - list with highest relocation weight.
12. If r has a fixed position , then its SPP will be this single position . If SPP of ris not empty , a single position for r is sampled from its SPP , and the SPP ofall resources in temporary -list is updated to reflect this new single position

of r.
13. Remove r from temporary-list. If temporary -list is empty go to 17 else

choose a resource with relocation weight of + oo, bind it to r, and go to 15. If
no such resource exists, go to 14.

14. Choose from temporary-list the resource that has the highest interaction
(sum of proximity weights ) with the resources for which a position was
sampled.

15. Prune the SPP of r as described earlier in section 3.1.
16. If the SPP for r is empty, then go to 17 , else go to 12.
17. If counter < X then go to step 8 . If counter = X and no one set has sampledpositions for all resources , the problem is declared infeasible and user

intervention is required. If counter = X and there exists at least one set of
feasible positions for all resources , then bind the positions of the resourcesin PTF- i-j to the positions of the set that minimize VFL.

18. When the layouts for all PTFs in CI`B are constructed go to 2.
100. Terminate the dynamic layout construction procedure.

4. EXAMPLE

4.1. Input to MoveSchedule
The following example illustrates the use of the dynamic layout construction

procedure. The network shown in Fig. 4 describes the process of building a
drainage system and foundation walls along the north, south, and west side of a
building. In addition to the activity schedule, MoveSchedule input includes the
activity resource assignment, the list of independent resources, and the site
dimensions (17.5x16). For ease of presentation, the space profiles of all
dependent resources are assumed to be of type C. The space profiles of all
independent resources are of type D for the duration of construction (in this case
0-10). All resource dimensions have been specified by the user.

Table 1 summarizes the input of hard and preference constraints. Resources
I-1, 1-2, 1-3, and 1-4 have user-assigned positions, which are as shown on the
layouts in Fig. 5. In particular, the centroid of I-1 is at (11, 8) from the origin (the
origin is the lower left hand corner of the figure).



415

4

Act-3; P-2, C-2-1

Act-2; C-1-1

6

I
1,0

Act-4; P-2, C-2-2

Activity Description Independent Resources Dependent Resources

1. Compacting soil S. wall I-1: Excavated Bldg. (10x8) P-1: Soil compactor (3x2)
2. Formwork W. wall 1-2: S. wall trench (10x1) P-2: Crane (2x2)
3. Pipelaying S. wall 1-3: N. wall trench (10x1) C-1-1: Lumber (2x5)
4. Pipelaying N. wall 1-4: W. wall trench (1x6) C-2-1: S. wall pipes (W)

N. wall pipes (5x3)

Figure 4. Example Schedule Showing Activities and Associated Resources

Table 1. Example Input of Hard and Preference Constraints

Hard Constraints Proximity Weights Relocation Weights

P-1 in-zone I-1 (#1) W0-2(I-2 P-i) = 100 W 'P-2 = °°

dx (P-2 1-3) = 0 (#2) W0-2(I
-4 C-i-1) = 50 W C-1-1 = 0

dx (P-2 1-2) = 0 (#3) W2-4(I
-4 C-1-i) = 50 W'C-2-1 = 100

dy ^(P-2 I-3) _ 2 (#4) W2-4 (I-2 C-2-1) = 100 W ' C-2-2 = 100

dy (P-2 1-2) <_ 2 (#5) W6-10(I-3 C-2-2) = 100

4.2. Generating the Dynamic Layout
Given the aforementioned input, MoveSchedule identifies the PTFs. First, it

checks independent resources with fixed positions to see whether they fit on site

without violating non-overlap this caseconstraints
e thesingleton c{P 2}) and computes the

of non-relocatable resources (in
resulting CTB, 2-10. The SPP of P-2 (SPPP-2) is then computed given the fixed
position resources and the default non-overlap constraints. SPPP_2 is further
pruned by applying the hard constraints that exist in CTB between P-2, 1-2, and
1-3. In Fig. 5.a, an arrow labeled with the number of each hard constraint, points
to the set of positions (shaded area) where P-2 satisfies that constraint. In this
particular case, the intersection of these rectangles results in the single position

for P-2, as shown in Fig. 5.a. The following steps detail the
sequential construction of individual
PTFs that are either subsumed by CTB or
in-between CTBs.

PTF-0-2 precedes CTB and is selected
#2 1-4 MoveSchedule selects the non-firstI I .
3 P12 11 relocatable resources for which no

Figure 5.a. Layout-2-10

position was selected yet; none exist for
this PTF. The remaining resources in

PTF-0-2 are sorted in descending order of
the sum of their proximity weights with
positioned resources on site: P-1 is
selected first , followed by C-1-1.
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SPPP_ 1 is first pruned to satisfy hard constraint # 1 between P-1 and I - 1. It isfurther pruned to satisfy preference constraints , i.e., (XP-1,YP-1) is computed by
solving the following two sets of equations and choosing the minimal set:

P-1

Figure 5.b. Layout-0-2

ENMEMOR=

INEMEMISM

Min 2001 XP_1- 111 ; ST 8.5 5 XP-1< 14.5
Main 2001 YP-1- 4.51; ST 6<_ YP-1:5 10

or

MIin 200 I XP-1- 111 ; ST 8 <_ XP-15 15
Main 2001 YP_1- 4.51; ST 6.5<_ YP_1< 9.5

The same method is used to derive SPPC-1-
1. Positions for P-1 and C-1-1 are shown in Fig.
5.b. Similarly, layout PTF-2-4 is constructed
(Fig. 5.c). Note the relocation of C-1-1 to
accommodate the non-relocatable resource P-2 .
The position of p-2 was determined earlier to
be the only one feasible after satisfying P-2's
hard constraints.

5. RESEARCH STATUS

MoveSchedule is currently being imple-
mented and its heuristics remain to be tried.
Its success will depend on the amount of work
in l d ivo ve n specifying all constraints, and on

Figure 5.c. Layout-2-4 the adequacy of the heuristic values used.
To our knowledge, this model is unique in that it addresses the reuse of space

by resources whose presence on site depends on a schedule. The MoveSchedule
model for dynamic layout construction as presented here is part of ongoing work
to automate the space scheduling task [6] which refers to the bi -directional
interaction between activity scheduling and space allocation. Automating this
task includes implementing strategies for performing time-space trade-offs to
solve spatial conflicts or infeasible layouts as they are arise in the process ofdeveloping the dynamic layout.
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