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Purpose  When a laser scan is performed and no prior information is available about the building, standard sections of 
components need to be identified from point cloud data in order to generate informative as-is building information models 
(BIMs). Currently, the standard steel sections used at a site are not automatically identified from the point cloud data. 
Various issues related to the laser scan data, challenge automation, such as occlusions, missing data points, angle of 
incidence, and imprecision of measurements on the data.  Method  The research described in this paper relates to the 
manual determination of steel beam sizes used in a steel worker training facility, which contained about 16 beams, 63 
columns, and 12 scans collected over 4 days of construction.  Results & Discussion  We identified that occlusions and 
noise are the major challenges associated with recording accurate dimension measurements. The identification of cor-
rect steel sections based on such inaccurate measurements is even more challenging since the decision should be 
based on all defining (e.g., flange width, depth) dimensions.  
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INTRODUCTION 
As-built or as-is Building Information Models are 
being generated for a variety of purposes, including 
retrofitting, architectural renovation, documenting 
site conditions, spatial program validation 1. Laser 
scanners are getting a lot of attention for collecting 
3D data regarding the geometry of the building for 
BIM generation with the advantages of speed, cov-
erage, and considerably long range 5. Identifying 
section dimensions from the laser scan data imposes 
challenges. It was reported that mixed pixels can 
cause sectional losses up to 5.6 cm on bridge col-
umn dimensions 3. Furthermore, occlusions, low 
point density, and surface reflections can further 
reduce the quality of the information obtained from 
the laser scan data 2.  
 
Identification of steel sections is one of the most 
challenging cases of the object identification prob-
lem. In steel structure identification, sub-millimeter 
level accuracy is generally required. The structures 
can be complex and so the occlusion rates can be 
high. Steel components can have shiny surfaces 
leading to reduced data accuracy. The aim of this 
study is twofold. First, we would like to understand 
the range of errors that can occur due to the unique 
nature (e.g., small section sizes, accuracy require-
ments, occlusions, complexity) of steel structures 
and components. Second, we would like to under-
stand the challenges of identifying steel sections 
from the laser scan data.  
 

In order to investigate the severity of the problem, 
We performed a case study on an objective data set. 
By objective we mean that the data set shouldn’t be 
generated with special precautions to impact the 
results of this study. It should depict the generic 
problems one might face when performing a similar 
task on a different data set. The testbed used in this 
study is a training facility for steel erectors. The laser 
scan data was collected for automatic construction 
site progress and process monitoring in sequences. 
The BIM was generated by a professional company 
for potential uses such as evaluation of object 
recognition algorithms.  
 
In this study, we manually recorded the all six di-
mensions of the I-Beams (i.e. section height, bottom 
and top flange widths, web thickness, and bottom 
and top flange thicknesses) composing the steel 
structure. Then, for each section, we identified the 
top 3 sections from the AISC Steel Sections4 table 
that would fit to the dimensions identified. Assuming 
that no prior information is available regarding the 
structure, the identification stage was performed 
independent of the BIM. Identified sections were 
ordered by how well the identified sections describe 
the true sections. The identified sections are com-
pared to the BIM for quantifying the identification 
accuracy. Potential challenges of identification of 
standard steel sections based on laser scan data 
were evaluated by observation. 

 

 



 

IDENTIFICATION OF STEEL SECTIONS FROM LASER 

SCAN DATA 
In order to understand potential challenges of steel 
section identification from the laser scan data and 
study the problem, we set up a testbed based on an 
objective data set. Using the laser scan data, we first 
manually identified the steel sections from the laser 
scan data. Then, we compared the identified steel 
sections with the reference BIM. Finally, by studying 
the patterns of bad estimates and the laser scan 
data, we identified the challenges of the identification 
problem specific to steel modeling. 
 
The Testbed 
The testbed used for this study is a training facility 
used for training ironworkers in erecting a steel 
structure. The purpose of the scanning was to moni-
tor the process and the progress of the erection. The 
structure was laser scanned and the data was col-
lected over a period of 4 days from 12 different loca-
tions.  
 
The structure was scanned after every component 
was erected. Hence, the scan data captures the 
progress of the erection. The scans were performed 
when there is erection activity on site and workers 
are present. Scans were registered using fiducial 
targets. 

 
Fig. 1. Registered laser scan data. The coloring re-

fers to the different scans collected at different times. 

Fig. 1 presents a snapshot of the registered scan 
data. Individual scans are colored with different col-
ors. It can be seen that points corresponding to 
some of the components have consistent colors 
throughout the components. This means that those 
components are only scanned from a single location. 
Some other components have more than one color. 

This means that those components are partially 
scanned from multiple locations. Trusses on the 
second floor are good examples to the second case. 
 
The configuration of the steel structure during the 
erection composed of a permanent 4 story tower and 
the lower two stories that were erected during the 
training. About 36.5 million points were collected 
over the course of the training. In the figure it can be 
seen that there are also a partial basement floor 
(Level 0) and two beams on the top floor of the tow-
er, which we called Level 5 throughout the paper. 
 
A professional company generated the BIM of the 
structure. The BIM of the structure and the laser 
scan data constituted the testbed of this study.  
 
Measurement method 
Currently, such modeling tasks are carried out man-
ually. Hence, we used a manual method for measur-
ing the dimensions of the steel sections. However, 
several approaches can be adopted for manually 
recording the measurements.  In order to identify the 
best suiting method to our testbed, we examined 
four different manual approaches on a small portion 
of the laser scan data.  
 
The metrics we used for the evaluation of the manu-
al measurement methods were overall accuracy of 
identification, easiness, and time. We define easi-
ness as how comfortably the operator performs the 
measurement task with a given method. We asked 
the operator to compare the methods verbally to 
assess the easiness.  
 
The measurement methods used for recording the 
section dimensions are as following: 

1- Point-to-point measurement: This method 
manually selects two points for every di-
mension (e.g. top flange width) and records 
the distance between these points.  

2- Distance between edges: In this method, 
the distances between the edge lines of a 
component are recorded. The edges are 
created by manually selecting the points 
along the edges and fitting lines to the 
points belonging to the edges. 

3- Distance between plane-plane intersec-
tion lines: Similar to the second method, 
the distances between the edges are rec-
orded. However, in this method, first planes 
are fitted to the surfaces of the components 
(i.e., flange surfaces and web surfaces). 
These planes are intersected to find an es-
timate of the location of the edges.  

4- Cross-section tracing: In this method, 
cross-sections are cut through the point 
cloud. Projecting the points that are within a 



small tolerance from the cutting planes and 
connecting the points generates cross-
section traces. Dimensions are measured 
on these traces. 

 For each of the tested methods, 6 measurements 
were made along the components for every dimen-
sion of the components. For example, AISC steel 
section tables define I-beams using 6 dimensions 
(i.e., the depth of the section (D), the width of the top 
flange (W1), the width of the bottom flange (W2), the 
thickness of the top flange (t1),the thickness of the 
bottom flange(t2), the thickness of the web(t3)). 
Therefore, for an I-beam a total of 36 measurements 
should be made (6 measurements for each dimen-
sion times 6 dimensions).  
 
After recording the measurements, we compared the 
measurements to the BIM dimensions. Based on the 
application of the four methods on a small subset of 
the scan data, we assessed that the first method 
(point-to-point measurement method) is equally ac-
curate compared to the other three methods while 
being easier and faster to apply. Though, it should be 
noted that this assessment cannot be readily gener-
alized without further investigation since the compar-
ison is workflow specific. For our purposes, however, 
the aim is identifying a method that can produce 
accurate measurements on the point cloud. There-
fore, we selected the first method for the rest of the 
study. 
 
Best Section Selection 
After all the measurements are recorded for all of the 
components, standard steel sections that correspond 
to those measurements are identified. Since the 
measurements were performed independent of the 
BIM and assuming no prior information, first, the 
shapes of the sections were identified. It was as-
sessed that all of the components are W-shaped 
steel sections.  
 
The standard section closest to the measurements 
was named the best fitting section (or the best esti-
mate). It was observed that the average measure-
ments were not always exactly equal to the dimen-
sions of the standard steel sections from the AISC 
table. Additionally, the measurements had standard 
deviations of several millimeters. With such variation, 
it was not always possible to narrow down the selec-
tion to a single standard section. Therefore, we se-
lected the top three standard sections that best fit 
the measurements.  
Ideally, all six measured dimensions of the steel 
sections should be treated equally when comparing 
the measurements to the AISC section table. How-
ever, flange and web thicknesses were often at the 
order of the standard deviations recorded. The in-
crements of thicknesses between different standard 

steel sections were almost always smaller than the 
standard deviation of the measurements recorded. 
For example, for a component with a measured 
flange thickness of 1.73 mm and standard deviation 
of 0.2 mm, the selection should be made between 33 
sections. For the same component with the average 
section depth of 40 mm and standard deviation of 
the depth of 0.2 mm, there is only one W-shaped 
component in the AISC table. Therefore, preference 
was given to the depth of the section and the flange 
widths over thickness dimensions. 
 

RESULTS 
The reference BIM file was used to check the accu-
racy of the best fitting sections. The three best fitting 
sections were compared to the steel sections from 
the as-designed BIM file. The components where the 
best fitting section was matching with the correct 
section from the BIM were referred to as the accu-
rate estimates. There were also cases where the 2nd 
and the 3rd best estimates were matching to the 
correct sections from the IFC file. The cases where 
none of the best sections were matching with the 
correct section from the BIM were classified as ‘No 
hit’. 
 
For the columns, our best estimate was the correct 
section for only 18.75% of the cases. The second or 
the third best estimate was the correct section for 
50% of the cases. For almost one third of the col-
umns we were not able to determine the correct 
section.  
 
For the beams, the results were slightly better. We 
were able to find the correct steel section for 39.68% 
of the beams. For 22.22% of the beams, we were 
not able to determine the correct section.  
 

CHALLENGES OF IDENTIFYING STEEL SECTIONS 

BASED ON THE SCAN DATA 
Based on the obtained results and close investiga-

Table 1. Results of the identification of steel sections 

from the laser scan data 

Results for Columns

Total number of columns  16  

1st best estimate is correct 3 (18.75%)  

2nd  or 3rd  best estimate is correct  8 (50%)  

No hit 5 (31.25%)  

Results for Beams

Total number of beams  63  

1st best estimate is correct 25 (39.68%)  

2nd  or 3rd  best estimate is correct 24 (38.1%)  

No hit 14 (22.22%)  



tion of the scan data, we identified that there are 
several reasons as to why identification of correct 
steel sections is a difficult task. Namely, the chal-
lenges that can be attributed to this difficulty are 
associated with occlusions and noise in the laser 
scan data.  
 
Occlusions  
Obstruction of the laser beams by the components in 
the structure or by other objects (e.g. construction 
equipment, workers, etc.) causes occlusions in the 
laser scan data. From the BIM generation perspec-
tive occlusions prevents either the identification of 
the shape of the components or the correct identifi-
cation of the dimensions of the components. The 
former is caused when a component is completely 
occluded. The latter is caused by the fact that due to 
occlusions, some of the dimensions of the compo-
nents cannot be measured. A common example is 
that when a flanged beam is scanned only from one 
side the web thickness cannot be measured. There-
fore in order to measure all dimensions, the compo-
nents should be scanned from all sides.  
In our testbed, for only one of the components the 
occlusions prevented any dimension measurement. 
However, partial occlusion rates (ratio of the number 
of partially occluded components to the total number 
of components) were high.  
 
Partial occlusion rates for each floor are given in 
Table 2. Rates are calculated as the number of oc-
cluded components on a given floor divided by the 
total number of components on that floor. For exam-
ple, 85.71% of beams on level 3 had partial self-
occlusions. Unrelated objects partially occluded 
42.86% of the components on the same floor (Table 
2). 
 
Missing data almost always resulted in wrong meas-
urements. We identified a special case, however, 
where although the standard deviation of the meas-

urements were low the measurements were not 
close to the actual dimension. In such cases, high 
precision (low standard deviation of measurements 
implies high precision) did not mean accuracy of 
identifying the best section accurately. This special 
case is caused by consistent occlusion throughout 
the component. The occluded parts of the section 
cannot be measured as expected. Additionally, since 
the occlusion is consistent through the member the 
spread of the recorded measurements are low alt-
hough they are far from the actual values. For ex-
ample, the standard deviation of the measurements 
of depth of section for Beam 108 was only 0.13mm 
(less standard deviation implies a precise measure-
ment) and the average measured depth was 
3.19mm. But the actual depth of section is 15.88 
mm.  
 
Noise 
Noise in the data caused the spread of the meas-
urement values to a wide range. Data noise was 
mostly caused by mixed pixels as the laser beams 
hit the edges of the components3. This spread is 
measured by the standard deviation of the meas-
urements. Standard deviations were often compara-
ble or even larger than the difference between con-
secutive sections in the AISC steel sections data-
base. This constitutes a challenge because it is no 
more possible to narrow down the search to a single 
component.  
 
In the identification of the best estimate the best 
estimates were chosen to the sections within the 
interval of [µ-σ , µ+σ] where ‘µ’ is the mean value of 
the measurements and ‘σ’  is the standard deviation 
of the measurements recorded. 
 
Table 3 shows example cases of the number of sec-
tions falling within one σ range of the mean value of 
measurements. The sections are counted individual-
ly based on each dimension. For example, for  

Table 2. Distribution of occlusions by level 

 Total number of components Self -occluded Unrelated objects Undefined edges 

Columns 16 2 (12.5%) 1 (6.25%) 1 (6.25%) 

Level 0 Beams 17 1 (5.88%) 13(76.47%) 12(70.59%) 

Level 1 Beams 15 2(13.33%) 5(33.33%) 8(53.33%) 

Level 2 Beams 11 7(63.63%) 8 (72.72%) 7 (63.63%) 

Level 3 Beams 7 6 (85.71%) 3 (42.86%) 5 (71.43%) 

Level 4 Beams 11 7 (63.63%) 6 (54.54%) 8 (72.72%) 

Level 5 Beams 2 1 (50%) 2 (100%) 1 (50%) 
 



Column 1, basing the best fitting section on only the 
section depth gave 5 choices whereas basing the 
best fit guess only on the top flange thickness gave 
115 choices.  
 
Also, finding the best fitting sections for some sec-
tions was a challenge as none of the dimensions 
were helpful in finding best fits. For example, Beams 
108 and 113 have absolutely no best fitting sections 
from any of the dimensions. The reason was that the 
mean measurement values did not coincide with any 
value in the table and within one σ range there were 
no sections.  
 
Beam 109 has 77 best fitting sections and beam 112 
has 52 best fitting sections based on the top flange 
thickness. The solution sets were considered to be 
very large. In such cases, the standard sections with 
the closest values to the mean measured dimen-
sions were chosen as the best fitting sections. 
 
Additionally, the section estimates with respect to 
individual section dimensions, such as those in Er-
ror! Reference source not found., did not have 
intersecting sets of sections for some of the cases. 
Therefore, for those cases, using more dimensions 
did not help with the selection.  
 

SUMMARY AND CONCLUSIONS 
In this paper, we reported on our research on manual 
identification of the standard steel sections from the 
as-is point cloud data from laser scanners. For this, 
dimensions of the sections were measured on the 
point cloud data and these measurements were 
compared with the AISC database to find the best 
fitting sections. These best fitting sections were 
checked for accuracy using the as-designed BIM file. 
  
The results of the identification showed that the best 

estimate was only accurate for 18.75% of the col-
umns and 39.68% of the beams. For 31.25% of the 
columns and 22.22% of the beams, none of the es-
timates were the correct section.  
 
We assessed the major challenges for recording 
measurements in point cloud data to be occlusions 
owing to the shape of the sections and unrelated 
objects like equipment, mixed pixels at the edges 
and noisy data. Particularly, large standard deviation 
of measurements compared to the section dimen-
sions was the major reason behind the low identifica-
tion rates. The results prove that modeling steel 
structures with the current equipment technology 
and processing workflows is a difficult and low accu-
racy task. 
 
In this paper, we used a manual method for record-
ing the section dimensions and selecting the sec-
tions. Additionally, no prior information was used to 
aid in the selection process.  
 
This study aims at quantifying the accuracy of identi-
fication of steel sections from laser scan data. To the 
best knowledge of the authors’, such a quantitative 
evaluation does not yet exist. The testbed and the 
results of the manual identification could be used as 
a baseline for comparison and evaluation of object 
recognition algorithms on this dataset for future stud-
ies. The results of this study points to the low accu-
racy of laser scanners in imaging small details.  
 
Identification process could be improved using statis-
tical or machine learning methods.  Instead of treat-
ing all the measurements equally, statistical methods 
could be used to filter out measurements with lower 
confidence. 
 
Additionally, prior information about the structure can 

Table 3. Number of sections falling within one standard deviation of the mean measurement [µ-σ , µ+σ] for each dimension. 

Section Based on  D Based on W1 Based on W� Based on t1 Based on  t2 Based on t3

Column 1 5 20 20 115 44 65 

Column 2 21 46 30 48 53 33 

Column 4 13 64 19 0 52 275 

Column 8 37 85 94 105 85 111 

Beam 108 0 0 0 0 0 0 

Beam 109 0 0 0 77 0 0 

Beam 112 0 0 0 52 0 0 

Beam 113 0 0 0 0 0 0 

Beam 305 21 9 5 0 0 92 

Beam 503 21 2 3 47 12 22 

Beam 504 19 2 0 36 31 33 

Beam 508 16 5 0 0 0 0 

 



greatly simplify the process. The search space could 
be constrained from several angles using such in-
formation. For example, the search could be per-
formed among the sections that are known to be 
used in the structure. 
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