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Abstract 

Construction of Breakwater requires large volumes of appropriately graded rock.  Geological 
characteristics and blasting practices at the quarry determine the gradation of the quarried rock.  If the 
gradation of quarried rock does not meet design requirements, there is wastage of quarried rock or additional 
cost to reprocess it to meet requirements.  This work utilizes mathematical models to forecast the gradation 
of rock from primary blasting.  These models are programmed in the form of a spreadsheet to be used for 
decision support.  By varying the blasting parameters the best fit between requirements and quarry yield can 
be found.  In addition, a genetic algorithm based optimization model to determine the optimal values is also 
developed and illustrated with an example.   
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Introduction 

Breakwater construction involves quarrying, transportation and placing large volumes of appropriately 
graded rock. The large volumes of rock required and the gradation specified usually necessitates dedicated 
quarries for the project.  Ideally, based on the geology of the quarry and blasting methods, the blasting 
pattern can be designed to ensure that the rock yield from primary blasting is close to the specified gradation.  
However, common practice is to produce large size rocks through primary blasting and then break these 
down to required specifications using secondary blasting. (Carlos, et. al. 1995)   This process adds to the cost 
of the operation and results in considerable wastage of materials. 

One of the key reasons for the current practice is that there are no standardized methods and decision 
support tools available to assist in forecasting the quarry yield for quarry characteristics and alternate blasting 
patterns (Clarke et. al. 2005).   The objective of this work is to propose a decision support methodology 
based on available models and develop a tool to implement the methodology.   The work utilizes the Rosin 
Rammler model (Vrijling et. al. 1990) to forecast quarry yield. A spreadsheet is used to encode the workflow 
of the methodology.   In addition, the optimization features of the spreadsheet are used to automate the 
selection of the blasting parameters to minimize excess material.  The utility of the tool is illustrated using an 
example. 

Proposed Methodology 

Figure 1 shows an overview of the proposed methodology.  The design specifications for a particular 
section of the breakwater are considered as the initial input to the process.  It is assumed that the design of 
the breakwater is frozen and the blasting parameters can be varied to ensure quarry yield obtained matches 
with the given design requirements.  

The design requirement is based on the coastal parameters and properties of rock available in the quarry.  
The requirements will specify the various sections of the break water and the required gradation of rock for 
each section.  Figure 2 shows typical sections of a breakwater and Figure 3 shows the rock demand 
requirements for the sections.  The yield of the quarry must match with the demand to ensure adequate 
supply of materials with minimum wastage.  
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As shown in Figure 1, the yield of the quarry is based on geological characteristics (Rock Intact 
properties) of the quarry and blasting pattern utilized.  Detailed mathematical models have been formulated 
to estimate the quarry yield.   

 

 

 
 

Model for Quarry Yield: 

The quarry yield for this work is calculated using the equation specified by equation (1): (Latham, et. al. 
2006a) (Latham, et. al. 2006b) 
   Y = 1 – exp{-0.693(Dy/Db50)nRRD}    (1) 

Where: 

 Dy -    Specific particle size  
Db50 - 50% passing sieve size in the blast pile 

 nRRD - Rosin–Rammler uniformity index for sizes  

 Db50 is given by Kuznetsov equation; this suggests that average size is controlled by specific charge. 

Figure 1 Proposed Methodology – Optimal use of Quarry 

Figure 2 Typical Section of Rubble Mound Breakwater 
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  Db50 = 0.01. A . (V/Q)0.8  . Q0.167 . (E/115)0.633  (2) 

 Where: 

  A = rock factor – calculated by equation (3)  

  Q = charge concentration per blast hole (kg) 

  V =volume of rock broken per blast hole (m )  

  E =relative weight strength of explosive (ANFO= 100, TNT=115); 

 

 

Rock factor A: 

  A = 0.06(RMD + JF +RDI + HF)    (3) 

 Where 

  RMD (Rock mass description): 10 if powdery or friable, = JF if vertically jointed, 50 if massive rock  

  JF (Joint Factor): Joint Plane Spacing term (JPS) +Joint Plane Angle term (JPA) 

  JPS = 10 if average Principal Mean Spacing (PMS) <0.1 m; 20 if 0.1 < average PMS < to 1 m;  

50 if average PMS>1 m. 

  JPA = 20 if dipping out of face, 30 if striking perpendicular to face, 40 if dipping into face  

  RDI = Rock Density Influence=0.025ρr (kg/m3) −50 

HF = Hardness factor=E/3 if E<50, or UCS/5 if>50, depending on uniaxial compressive strength 
UCS (MPa) or Young's Modulus E (GPa). 

ρr = Rock Density    

 nRRD in equation (1) is determined using Cunningham's uniformity index formula  
  nRRD = X (2.2 – 14B/d){0.5(1+S/B)}0.5(1-W/B) 

   ((|(BCL-CCL)| /L)+0.1)0.1L/H   (4) 

  Where  

Figure 3 Demand Chart - Breakwater



Information and Computational Technology 

 

440 

  d = borehole diameter (mm) 

  B = burden (m) 

  S = spacing (m) 

  BCL = bottom charge length (m) 

  CCL = column charge length (m) 

  L = total charge length above grade (m) 

  H = bench height or hole depth (m) 

  W = standard deviation of drilling error (m) 

  X = Design Pattern (Square pattern=1, Staggered pattern= 1.1)   

Using the above models the yield of the quarry can be calculated.  The yield of the quarry is expressed as 
the % of each rock grade range.  The yield can be varied based on the following 4 key blasting parameters 
Charge Length, Burden, Spacing and Bench height.  These are illustrated in Figure 4. 

 
Figure 4 Quarry Blasting Parameters 

The % of rock yield from the quarry in each fraction can be varied by altering the blasting patterns. 
Figure 5 shows three alternate yield curves and a comparison to the demand. 

 
Figure 5 Alternate Quarry Yield vs Demand 
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>10 ton 0 0.070 65,113 - 65,113 

TOTAL 1.000 1.000 873,991 67,034 67,034 

 Figure 9 Yield vs. Demand Curve 
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