Automation and Robotics in Construction XI
D.A. Chamberlain (Editor)
© 1994 Elsevier Science B.V. All rights reserved. 117

CONCPLANNER: AN AUTOMATED PROCESS PLANNING SYSTEM
FOR CONCRETE CONSTRUCTION

By: Raghavan Kunigahalli2 and Jeffrey S. Russellb

a Ph.D. Candidate, Dept. of Civ. & Env. Engrg., University of Wisconsin-
Madison, Madison WI 53706.

b Asst. Prof., Dept. of Civ. & Env. Engrg., University of Wisconsin-Madison,
Madison WI 53706.

Abstract: This paper presents Concplanner, a Computer Aided Process
Planning system capable of generating pictorial construction process plans for
automated concrete construction. Concplanner provides an efficient user-
interface by adopting interactive computer graphic programming techniques.
International Standards Organization computer graphic functional interface
standard - PHIGS has been employed to: (1) obtain graphical input through
logical input devices and (2) display pictorial construction process plans. An
additional capability of generating an obstacle avoidance path plan for
automated concrete placement has also been incorporated into the system. The
output corresponding to obstacle avoidance path plan can be used to provide
equipment-level instructions to Computer Numerically Controlled concrete
placement systems.

1. INTRODUCTION

Operations, processes, and work tasks comprise three levels in the
hierarchy of construction management that focus on field action. Work tasks
are the basic building blocks of operations and processes and must be clear
enough for a construction crew to grasp and visualize [1]. Construction process
planning can be defined as the act of preparing detailed task-level instructions
to execute a construction process. Large amounts of information that need to be
processed at the construction task-level may, in general, result in lengthy
instructions to: (1) construction workers and (2) controllers of automated
equipment operating on job-sites. Computer Aided Process Planning (CAPP)
systems for construction can: (1) shorten the instructions, (2) reduce the time
required to generate a process plan, and (3) investigate a large number of
alternatives using a combinatorial approach. In general, there are two basic



118

methods that can be employed to develop CAPP systems: (1) a variant process
planning method that retrieves an existing construction process plan for a
process or operation identical to the one under investigation and (2) a generative
process planning method that synthesizes the process information in order to
create a process plan for a given situation automatically.

In this age of visual communication, people prefer reading less and
viewing at a picture more. Object Oriented Programming (OOP) techniques
allow operations of input devices such as "clicking a mouse button” and
"selecting from a pull-down or pull-right menu" in order to generate different
views of a given picture. Provisions for such user-friendly graphic interfaces
reduces the amount of time required to train the construction engineers and
technicians to effectively use emerging technologies. This paper describes a
CAPP system entitled Concplanner. The system is linked to computer
graphics, through OOP, in order to generate a pictorial construction process
plan for concrete placement.

2. COMPUTER GRAPHIC PROGRAMMING PLATFORM

To-date, there are two computer graphic functional interface standards
approved by International Standards Organization (ISO): (1) Graphic Kernel
System (GKS) (ISO 7492) and (2) Programmer's Hierarchical Interactive
Graphic System (PHIGS) (ISO/IEC 9592). While both Fortran and C-binding of
GKS was adopted as standards in 1985, Fortran-binding of PHIGS was
approved in 1988 and C-binding in 1991. These standards offer portability to
many different computers using different operating system and window
systems. PHIGS supports a hierarchical model, whereas, GKS uses an older
model for graphics. Further, PHIGS is the first Application Programmer's
Interface (API) supported by the M.I.T. X Consortium and is one of the most
important APIs for 3-D graphics [2]. Both GKS and PHIGS standards were
considered when selecting a graphic programming platform to generate pictorial
construction process plans. PHIGS was selected because it is best suitable for
hierarchical graphic models.

3. OVERVIEW OF PHIGS

PHIGS provides a link between application and the display device and
enables manipulation of display device to deal with abstractions such as
geometric objects and color. PEX is a X Window system protocol extension for
3-D graphics. Just as Xlib generates X protocol, PHIGS in the X environment
generates PEX protocol. An efficient user-interface can be accomplished by
using: (1) PHIGS to produce graphics and (2) Xlib or X toolkits such as Motif,
XView, or OLIT to create other components such as menus and scroll bars.

Centralized Structure Store. Storage and manipulation of graphical
and application-specific data are supported through a centralized hierarchical
data structure, known as Centralized Structure Store (CSS). A fundamental
entity of data is called a structure element. Structure elements are grouped




119

together into units called structures. These structures are organized in directed
acyclic graphs (DAG) in order to build structure networks.

Output Primitives. Primitives are basic building blocks for composing
graphic images. PHIGS has 15 output primitives that can be grouped into the
following: (1) line primitives, (2) area primitives, (3) text primitives, and (4)
other primitives such as cell array and generalized drawing primitive.
Attributes control a primitive's appearance such as color and style. These
attributes can be either individual or bundled for a given workstation. The
attributes can be set through an aspect source flag.

Input Devices. PHIGS provides six classes of logical input devices in
order to enable application programs to effectively interact with the user.
These logical input devices include: (1) locator, (2) stroke, (3) pick, (4) choice, (5)
valuator, and (6) string. Each logical device's current value is called a measure.
Striking the device's trigger causes the device to change its measure. The
logical input devices can be used in any of the following three operating modes:
(1) request, (2) sample, and (3) event. In the request mode, the program stops
execution until the operator triggers the specified device. In the sample mode,
application programs can obtain the measure of a device at any time during
execution. The event mode of logical input devices results in an event queue
similar to the X event queue.

Workstations. PHIGS is based on the concept of abstract graphical
workstations that provide the logical interface for the application programs to
control physical devices. The abstract workstation is capable of accepting input
(or metafile input), output (or metafile output), or both. Each call to open
workstation function available in PHIGS library associates a given workstation
tdentifier with a generic workstation type and a connection identifier. The
current state of each open workstation is kept in a workstation state list and
can be obtained by calling the appropriate inquiry function. Occurrence of
changes to the displayed picture can be controlled by setting a display update
state. The display update state has two components: (1) deferral mode and (2)
modification mode. The deferral mode determines when the workstation is
updated and modification mode indicates whether the application program
desires PHIGS to simulate the picture changes quickly.

Name Sets and Filters. Highlighting, invisibility, and detectability of
output primitives can be manipulated by using name sets and filters. Name set
assign names to individual primitives and filters are responsible for
highlighting, making a primitive invisible, and setting a primitive as detectable
by a pick device [2, 3].

4. COORDINATE SYSTEMS AND TRANSFORMATIONS IN PHIGS

The mappings of graphical output primitives and logical input values are
performed by a series of transformations along following five different right-
handed coordinate systems: (1) Modeling Coordinate (MC), (2) World
Coordinate (WC), (3) View Reference Coordinate (VRC), (4) Normalized
Projection Coordinate (NPC), and (5) Device Coordinate (DC). The series of
transformations to the points applied during mappings is called transformation
pipeline. Within the transformation pipeline, PHIGS uses homogeneous
coordinates to represent points in Cartesian space and transformations are



120

specified by a 4x4 or 3x3 homogeneous transformation matrix. There are three
stages along the transformation pipeline: (1) modeling stage, (2) viewing stage,
and (3) workstation stage.

The transformations from MC to WC pertain to the modeling stage. This
stage transforms all primitives to a common coordinate system.
Transformations from WC to NPC pertain to the viewing stage. This stage
performs the following: (1) view orientation that orients the model with respect
to the viewer and (2) view mapping to NPC. View orientation is specified by the
following three parameters: (1) view reference point, (2) view plane normal, and
(3) up vector. These three parameters define the VRC coordinate system. The
view mapping selects: (1) view plane, (2) portion of the visible world coordinates,
(3) type of projection (parallel or perspective), and (4) a 3-D projection viewport
to NPC. The transformations from NPC to DC pertain to the workstation stage.
This stage allows mapping of portions of the NPC cube to portions of
workstation's display surface. The workstation transformation is specified by
selecting: (1) a workstation window and (2) a workstation viewport.

5. DESCRIPTION OF CONCPLANNER

Concplanner generates a construction process plan for concrete
placement using as input a wire-frame CAD model. In a wire-frame CAD
model, there is no information on faces (such as rectangular slabs) and the
adjacency relationships among them. Further, identification of portions that
are interior and exterior to the given floor is not self-evident.

For instance, consider the example floor shown in Figure 1. Imagine the
user constructing the picture on a computer terminal. Consider the following
situation: the user clicks the mouse at point x and drags the mouse to point y
and double clicks the mouse to complete the line corresponding to beam b-1.
The points x and y are initially recorded in DC as vertices corresponding to the
end points of the beam b-1. These end points in DC are transformed to WC and
stored in a vertex table. As a next step, the user can proceed by constructing
the line corresponding to any of the remaining 19 beams shown in Figure 1.
The user can even pan and move over to the other corner to construct beam b-9.
In such computer-aided drawing methods, there is no information to indicate
that the beam b-1 is a boundary beam and it has concrete material only towards
its right when moving from x to y. It is not even clear that beam b-1 is one of
the edges that enclose the rectangular slab labeled 4.

Concplanner obtains graphic input data corresponding to: (1) end points
of beams in a given floor, (2) identification numbers of beams corresponding to
the boundaries of the floor and obstacles (ordered clockwise), and (3)
alphanumeric identifications of columns along with the central coordinate
values. Following this, the Concplanner employs techniques from
computational geometry to: (1) obtain intersections among edges, (2) obtain
vertex to edge relationships, (3) form rectangular faces, (4) generate adjacency
relationships among faces, and (5) associate columns to the beams supported by
them. Face to face, vertex to face, and vertex to edge relationships can be
readily printed by executing a print command. Formation of rectangular faces
are simulated and interior and exterior (including obstacles) portions of the floor
are displayed using different colors.




121

Upon completing the display of a picture that distinguishes the interior
and exterior of the given floor, Concplanner prompts the user to select the first
rectangular slab where concrete is to be placed by clicking the left mouse button
anywhere in its interior. Upon clicking the mouse button, the selected
rectangular slab flashes three times while the determination of a 'nearly
optimal' sequence for concrete placement is found using combinatorial
optimization techniques.

As an example, if the user first selects rectangular slab 1 shown in
Figure 1, Concplanner generates the 'nearly optimal' sequence denoted as
rectangular slabs 1 through 8. A different sequence is generated when the user
first selects rectangular slab 4 shown in Figure 1. The generated sequence is
shown as 1' through 8' in Figure 2. Concplanner simulates the obtained
sequence by hatching the rectangular portions one by one. As Concplanner
supports off-line applications, a number of different possible sequences in
automated concrete placement can be visualized prior to the actual placement
process.

b-10
b-11 @ b-9
b-12 b-15
b-13 @ b-15 @ b-8
b-14 b-14
y
b7
b-16
® 7
b-17 / b-18
oY
bisd @ b-4 @ a
b-19 b5 20
(b-3)
b-2
X

Figure 1. Example Floor (Sequence 1)



122

Additionally, Concplanner has the capability of generating a detailed
obstacle avoidance path for the concrete placement pipe. The path of the
placement pipe interior to rectangular slabs corresponds to a direction-parallel
path. Paths between rectangular slabs along the 'nearly optimal' sequence
correspond to a minimal rectilinear path. The user is prompted for additional
input on placement pipe diameter in order to generate a detailed path plan.
The detailed path plan generated by Concplanner can be used to provide
equipment-level instructions to Computer Numerically Controlled (CNC)
concrete placement systems.

Figure 2. Example Floor (Sequence 2)

6. FUTURE RESEARCH

Rapid decision-making in the case of last minute changes in an execution
plan requires provisions for simultaneous display of pictorial construction
process plans at the job-site and possibly the corporate office. Extension of
Concplanner to display process plans and interact with input devices across a
network needs to be investigated. Further, safety precautions is vital to provide




123

accident-free automated construction environment. A detailed ergonomic study
related to concrete construction needs to be conducted in order to enhance
Concplanner's ability to generate safety precautions.

Currently, the viewing angle is restricted to the direction perpendicular
to the plan of a given floor. The system must be enhanced to allow several
views of the same model simultaneously on separate projection viewport.

7. CONCLUSION

The need for construction process plans were discussed. A brief
discussion on the two computer graphic standards approved by ISO was
provided. A description of the selected computer graphic programming
platform, PHIGS was provided. Five different coordinate systems defined in
PHIGS and the various stages along its transformation pipeline were discussed.
A description of Concplanner, a CAPP system for concrete construction, along
with an example application was also provided.

8. ACKNOWLEDGEMENTS

The second author wishes to thank the National Science Foundation for
Grant No. MSM-9058092, Presidential Young Investigator Award, for financial
support of this effort.

9. REFERENCES

1. Halpin, D. W. and Riggs, L. S., Planning and Analysis of Construction
Operations, John Wiley & Sons, (1992), New York, NY.

2. Gaskins, T., PHIGS Programming Manual - 3D Programming in X: The
Definitive Guides to the X Window System, O'Reilly & Associates, Inc., (1992),
Sebastopol, CA.

3. ANSI/IS09592.1, Computer Graphics - Programmer’s Hierarchical
Interactive Graphic System (PHIGS) Part I: Functional Description, American
National Standard Institute, (1989), New York, NY.



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

