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SUMMARY

This paper presents a new system (SIREM) capable of computing the six degrees of
freedom and the speed of a moving vehicle. It uses a rotating linear CCD camera on
board the vehicle and light sources positioned with precision on the site. The main
characteristics of the sensor are reviewed and the equations and method used to compute
the position and attitude of the vehicle are presented.

1. INTRODUCTION

To automate the work of a civil-engineering vehicle, it is necessary to control the
position of its tool. This tool is fixed on the vehicle via actuators, in such a way that it is
able to perform a task and meet the requirements of the performance specifications of

on-going work.
The tool is controlled in a frame fixed to the vehicle, which means that controlling

the tool requires the position and attitude of the vehicle in the absolute reference frame

of the job-site. Hence, measuring the position and attitude is a prerequisite to

automation.

The sensory system SIREM can supply information on the position and attitude of
civil-engineering equipment. SIREM (Systeme Intelligent de Reperage d'Engins Mobiles:
Intelligent System for the Localization of Moving Vehicles) is capable of providing at
any instant the six degrees of freedom of the mobile : the three coordinates x,y,z and the
three attitude angles (pitch, roll and yaw) in the absolute reference frame. Moreover,
SIREM yields accurate results (10 cm on the position and 0,1' on the angles) for a

mobile moving at 10 cm per minute.

In this paper, we present the principle of the sensor, its technical characteristics and a
method used to compute the coordinates (x, y, z) and the attitude (pitch, roll, yaw) of the

vehicle in the job-site frame.

2. PRINCIPLE OF SIREM

Punctual light sources (beacons) are allocated on the job-site. The position of every
beacon is known in the job-site frame. SIREM is a sensor located on board the vehicle. It
is able to measure, in its own frame, the azimuth and height of the beacon that is read at

a given instant (figure 1).
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When several beacons have been read, SIREM computes the coordinates, the attitude
angles and the speed of the vehicle in the job-site frame. In practice, the data from the
last beacon read is added to previous measures, so that the coordinates, attitude and
speed are computed at each reading. Thus, the tool of the vehicle can be controlled
automatically for the task to be achieved.

SIREM is composed of a hardware part and a software part.

The hardware is composed of :

- a linear camera (50 mm lens, vertical linear CCD sensor with 1728 pixels) mounted
on a rotating board, actuated by a motor. The rotation axis is equipped with an
incremental encoder and turning contacts.

- a micro-computer (Intel 80286, 12 MHz, mathematic coprocessor) equipped with a
digitization card for the camera, Input/Output cards, a counter card for the incremental
encoder and power and control circuits for the motor.

When the linear detector is lighted by a beacon , the height angle (6) is measured by
the linear camera whereas the azimuth angle (X) is measured by the incremental encoder
(figure 2).

The software part contains the following elements :

- a real-time executive (RTC), programmed in C.
- a supervisor task, which manages three other tasks : data acquisition, data filtering

and position and attitude computation.

The first two tasks provide information to the position and attitude computation
module, at every reading of a beacon, namely : the values X and a, the number i of the
beacon and the time instant t; of the reading.

The computation task uses the data from the readings and the positions of the beacons
in the job-site frame to compute the position and attitude of the vehicle in the job-site
frame at the time instant of the last reading.

The main present characteristics of SIREM are :

distance from the vehicle to the beacons : 3 to 45 meters.
maximum speed of the vehicle : 10 meters per minute.
rotation speed of the sensor : from 1 round in 2 seconds to 1 round in 20 seconds.
integration time of the camera : 1,2 10-3 second.
vertical image angle : 20°.
precision on o' and X : 0,05° and 0,1° respectively.
precision on the position of the vehicle : 10 cm on x and y, 5 cm on z.
precision on the attitude of the vehicle : 0,1' on the pitch, roll and yaw.
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the computation module of SIREM :

Several methods have been developed or are under development for the computation
of the position and attitude of the vehicle using the measures :

- static localization for a motionless vehicle.
- dynamic localization for a moving vehicle. In this case, two approaches have been

used : deterministic and stochastic (using and extended Kalmann filtering). For each of
these two approaches, two cases have been considered :

- the two-dimensional case : the vehicle moves in a plane [LE CORRE 91].
- the three-dimensional case : the running surface is partially known.

The method we propose in this paper deals with the three-dimensional case, with a
deterministic approach.

3. DETERMINISTIC DYNAMIC 3D LOCALIZATION

3.1. Notations

We define the following frames (figure 3) :

O : absolute reference frame or job-site frame ;
Mi : the frame of the mobile at time ti.
Ci : the sensor frame at time ti.
B : a frame attached to the beacons.

and the homogeneous transforms :

°TMi : describes the position and attitude of the mobile in the absolute reference
frame 0 at time ti. It is the transform we wish to compute and contains six independent
values.

MiTc : the position of the sensor frame with respect to the vehicle. Although the
subscript appears for consistency with previous definitions, this transform is a (known)
constant since the sensor is fixed on the vehicle. Hence, MiTci = MTc.

CiTB : describes the position of the read beacons in the sensor frame.

We can write the following matrix equation (see figure 3) :

OTMi = OTB * BTCi * CiTMi

with BTCi = [CiTB]-1, which is easy to calculate.
(1)

At time ti, beacon Bi is read (this convention can be used by renumbering the beacons
if required).

Let [kN, kyi, kzi] be the coordinates of beacon Bi in the frame Q.
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In Ci, it is easy to write a relation between the azimuth and height and the coordinates

of the beacon :

i
tanAi = tang, _

iyi ixi2 + iyi2
(2)

3.2. Formulation of the problem

The computation of the position and attitude of the vehicle at instant t; requires to
integrate the equations of the movement on the running surface. This implies a model of

the surface and a law for the movement.

We shall here consider the case where the following properties, which will be later

justified, are locally satisfied :

- the surface can be approximated by its tangent plane ;
- the movement of the vehicle is piecewise linear ;

- its speed is piecewise constant.

Let bi be the distance from the origin of frame C, to beacon B,. In the conditions

formulated before, we can write (figure 4)

°xi - v.(tk-to) = bi.cosci.cos,ki
°yi = bi.cosai.sinXi
°zi = bi.sinai

The computation of the coordinates will be achieved as soon as v and bi are found.

At time tj, the system reads a second beacon Bj. This yields three equations for the

coordinates of Bj in the sensor frame at time to.
It is then possible to consider the distance did between Bi and Bj, which is the same in

any frame.

dij2=(°xi-ON )2 +(°yi-Oyj }- + NZi - °zjr

The three terms can be written as :

(°xi - oxj )2 = v2.^j2 + bi2cci2 + bj2ccj2 -2bibjcciccj + 2vAtij.(bicci - bjccj)

(°yi - °yj)2 = bi2cs1 2 + bj2csj2 - 2bibjcsicsj
(O - O)2 = bi2sj2 + bj2sj2 - 2bibjsisj

with :

cci = cos(6i).cos(ai)
csi = cos(Qi).sin(Xi)
si = sin(Qi)
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We thus obtain the equation :

f(i,j) = bit + bj2 - aij.bi.bj - dj2 + tij2.v2 + tij.pi.v.bi - tjj.(3j.v.bj = 0 (3)
with : aij = 2.[cci.ccj + csi.csj + si.sj]

Pi =2.cci
tij=t;- ti

Our problem is then equivalent to computing the values v, bi and bj. Two readings
yield only one equation. The nth reading will add one extra equation and allow to write
n-1 new equations. Hence, with four readings, we get 5 unknowns (v and the distances
to four beacons) and 6 equations. We shall then use four readings and solve a redundant

non-linear system in five unknowns.

3.3. Solution of the system

We have six non-linear equations in five unknowns, which we can write as :

f(i,j) = f(v,bi,bj) = 0 (4)
for j = 1,2,3 and i<j

We shall present two methods to solve this system. Both derive from the Newton-
Raphson method. The first takes advantage of the special form of the Jacobian matrix of
the system. The second decomposes the set of equations into two sub-systems.

The Jacobian matrix J of the system f(v,bi,bj)=0 contains 30 terms , of which 18 are a

priori different from 0.

Jv(i,j) Jb(k,
i,j) = S6b

k with k=i or k=j
by Sbk

J=

L Jv(2,3) 0 0 Jb(2,2,3) Jb(3,2,3)

Jv(0,1) Jb(0,0,1) Jb(1,0,1) 0 0

Jv(0,2) Jb(0,0,2) 0 Jb(2,0,2) 0

Jv(0,3) Jb(0,0,3) 0 0 Jb(3,0,3)

Jv(1,2) 0 Jb(l,1,2) Jb(2,1,2) 0

Jv(1,3) 0 Jb(1,1,3) 0 Jb(3,1,3)

The terms in J can be expressed as functions of the measures Xi, 6i, ti.

Jv(i,j) = 2.tij2.v + ^j.Pi.bi - tj.Rj.bj
Jb(i,i,j) = 2.bi - (Xij.bj + tij.(3i.v
Jb(i,i,j) = 2.bj - aij.bi - tj.(3j.v

(5)

(6)



546

First method.

It solves the non-linear, redundant system globally using the special form of the
jacobian matrix.

The Jacobian matrix has the following form : J =

where A is a full 3x2 matrix , B is diagonal 3x3, C is 3x2 with one single column
different from zero and D is an anti -diagonal matrix.

A B

C D

dv

and the system to be solved is :
A B

C DI

dbo

db1

db2

L db3 -

f(0,1)

f(0,2)

f(0,3)

f(1,2)

f(1,3)

f(2,3)

dbi f(0,1) f(1,2)
dv

it X1= , X2= db2 , F1= f(0,2) F2= f(1,3)
dbo

db3 f(0,3) f(2,3)

We have two matrix equations :

AX1+BX2=-F1 (7)
CX1 +DX2=-F2 (8)

Since B is easy to invert , (7) gives X2 as a function of X1 : X2 = -B-1 F1 - B-1 A X1.

This expression is then substituted to X2 in (8). We get an over-determined system of
the form :

MX1=C1

which is solved by a Least-Square Method, i.e. :

X, = (Mr M)-1 Mr C1. (9)

This gives X1 and X2, which are the increments to add to the unknowns v,bo,...,b4 in
the Newton-Raphson method. These computations must be iterated until convergence is
reached.
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Second method

principle :

This second method is a generalization of the solution presented in [LE CORRE 90] to
solve the static problem. Indeed, if v is set to zero in system (4) we get the equations of
the static problem. It has been shown in [DEVISE 90] that this method was more
efficient than general methods of mathematical libraries.

In this paragraph, we only show how to manipulate the system in such a way that the
solution is found by solving repeatedly a (simple) 3x3 non-linear system and an over-
determined non-linear 3x2 system. The latter can be transformed into a non-linear 2x2
system, which is easily solved using a Newton-Raphson method.

The idea consists of the following steps :

1- initialize v and bo with values that are supposed to be close,to the solution ;
2- introduce these values in the first three equations f(i,j)=0 and calculate the

corresponding values of b1, b2 and b3 ;
3- enter b1, b2 and b3 into the last three functions f(i,j) and check wether they are

equal to zero or not. If not, compute variations of v and bo that make v and bo best
satisfy the system (i.e. in the Least-Squares sense) and return to step 2.

solution of the overdetermined non-linear system

Solving the system f(i,j)=0 with j=2,3 and i<j for given values of v and bo requires to
calculate the jacobian matrix of the sub-system.

df(1,2) _ 9.dv + Sdbo

df(1,3) = S dv + Sbo.dbo

61
df(2,3) = SV.dv + o.dbo

with :
df(1,2)=Jv(1,2).dv + Jb(1,1,2).dbi + jb(2,1,2).db2
df(1,3)=Jv(1,3).dv + Jb(1,1,3).dbl + jb(3,1,3).db3
df(2,3)=Jv(2,3).dv + Jb(1,2,3).db2 + jb(3,1,3).db3

db 1, db2 and db3 are calculated as functions of dv and dbo by differentiating the first
three equations of system (4). We obtain :
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VIA 1) 0

0 Jb(2,0,2) 0

0 0 Jb(3,0,3) J

with :

c1 = - [ Jv(0,1).dv + Jb(0,0,1)•dbo]
c2 = - [ Jv(0,2).dv + Jb(0,0,2).dbe ]
C3 = - [ Jv(0,3).dv + Jb(0,0,3).dbo ]

db l cl

db2 = C2

db3 C3

The system is diagonal, so the calculation of dbl,db2 and db3 is obvious.

After computing the values v and bi using the first or the second method, the
homogeneous transform CTB, which represents the position of the beacons in the sensor
.frame, can be calculated. Hence, using equation (1) yields the homogeneous transform
ATM that defines the position and attitude of the vehicle in the job-site frame.

CONCLUSION

In this paper, we have first presented the principle and the characteristics of SIREM,
together with a dynamic localization method.

The principle of SIREM uses a three-dimensional dynamic localization sensor. It has
been designed by the Laboratoire Central des Ponts et Chaussees to meet the
requirements of automation of civil-engineering equipment [PEYRET 89]. The
hardware has been realized by CYBERG. The computation and the localization software
have been developed by the Control Laboratory of the Ecole Nationale Superieure de
Mecanique in Nantes. Job-site tests are scheduled for 1991-1992 at the Laboratoire
Central des Ponts et Chaussees, in cooperation with the road manufacturer Entreprise

Jean Lefebvre.

We have then presented a method for the dynamic localization of a vehicle (six
degrees of freedom) based on a deterministic approach. At each reading of a beacon, i.e.
at an average rate of one every two thirds of a second, the computation yields the
position, attitude and speed of the vehicle on a partially known running surface. In
addition to the computation of the position and attitude of the mobile, our method gives
information to build a model of the surface, since it position and normal are given every
third of a meter for a speed of ten meters per minute.

This work is supported by the the French Ministry of Research and Technology in the
framework of a two-year contract, with the partners presented in the previous

paragraphs.
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FIGURES

figure 1. The vehicle and its sensor

figure 2 . The sensor frame and the measures
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T (final result)
Mi

figure 3. The frames used in the localization method

v

figure 4
The movement of the vehicle and the measures
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