DIRECTIONAL CONTROL EMPLOYING FUZZY REASONING
OF A MICROTUNNELLING SYSTEM

Toshio Takatsuka: Affiliated Companies Headquarters
Tomohiro Kurosawa, Fumihide Sugino, Kouichirou Kawakami,
Yoshihiro Harada: Tsukuba Field Engineering
Development Center
Nippon Telegraph and Telephone Corporation
1-7-1 Hanabatake, Tsukuba-city
Ibaragi, 305, Japan

ABSTRACT

NTT has developed a microtunnelling system with new
directional control employing fuzzy reasoning which can construct
a tunnel along the designed line well, in response to a shortage
in experienced operators and the need to improve the working
condition. Fuzzy reasoning, in which the know-how acquired from
experienced operators are loaded, are certified using a dynamic
model capable of predicting the behavior of driving machines. The
field test in-site proved that the system is capable of providing
a control facility equivalent to that of experienced operators.

Key words: fuzzy reasoning, directional control, microtunnelling

1. INTRODUCTION

Nippon Telegraph and Telephone Corporation (NTT) is
constructing approximately 1,000km of underground cable conduits
per year. Recently, due to environmental and economical reasons,
the need for an efficient microtunnelling method has become
increasingly important for outside plant engineering. Consequently,
NTT has developed three kinds of small diameter
pipe-jacking system (Called ACE-MOLE system) classified
according to their diameter and penetration.[1,2,3]

The model 301, discussed in this paper, can make a pipe
tunnel 300 mm in diameter using the nonmuck-discharge penetrating
method. This system can construct a tunnel of up to 250 meters in
length and 150 meters in curvature radius in comparatively soft
ground (N-value less 10).

As quality of tunnelling work depends on the skill of
operator, there is a great demand for experienced operators. Moreover,
the amount of tunnelling work is now on the increase,
and the shortage of experienced operators is creating a serious
problem. What makes matters even worse is that it takes a
considerable time to train. One way is to use a computer which
can control the driving machine automatically to cope with these
difficulties. However, automation of the directional control on
microtunnelling has made little progress because the driving
machines are controlled by human beings whose knowledge cannot be
determined by ordinary control theory.[4,5]

Recently, Prof. L.A. Zadeh and Prof. E.H. Mamdani et al.
have proposed the fuzzy set theory which obtain the numerical
value of indefinite concepts like "large", "rather small" and
"very high". Lately there are a great many applications of the
fuzzy set theory for control of dynamic plants, automatic train operation and for directional control of shield tunnelling machines. [6,7,8,9,10]

Therefore, we have put the fuzzy set theory to practical use in directional control of microtunnelling and made an accurate system which is capable of providing a control facility equivalent to those of experienced operators. This paper deals with application of the fuzzy set theory for directional control and the results of a in-site field test.

2. SYSTEM OUTLINE

As shown in Figure 1, this system consists of a driving machine, pushing machine, power unit, control panel and control support system. This control support system is capable of recording construction data, can applying fuzzy reasoning and display the intelligent results for control on the CRT. This microtunnelling system has a particular position detecting, a directional correction method and a pipe-jacking method, making it possible to drive longer distance tunnels and follow a curved line.

![System outline](image)

Fig. 1 System outline

The lateral position is determined by using the magnetic field emitted from a coil mounted inside the driving machine is detected by a search coil placed on the ground above. The vertical position is determined by detecting the difference between the value of the pressure sensor on the ground above and that of the pressure sensor mounted inside the driving machine. Pitching and rolling angles are also measured so as to estimate the direction of the driving machine.

To construct a pipe tunnel along a curved line, the directional correction method has been proven to be the most reliable. As for this system, the double-step-driving method in which both a driving jack and pushing jacks are operated alternately is used, and the head angle can be set at any angle. After the head is driven into the ground in the proper direction, driving machine and pipes are next jacked forward following the head. In this way, all necessary corrections can be made.
3. FUZZY RULE

In this system, directional correction can only be performed by changing the head angle, so operators have to determine the degree of the head angle based on not only the error but also their experience. We have defined the head angle and the pitching angle variation in Figure 2. Figure 3 shows the relation between the head angle and pitching angle variation using actual construction data. In this case, the head angle is the control input and the pitching angle variation is the amount of directional correction. It is general for the amount of directional correction to change as the hardness of the ground changes. Therefore, it is very difficult to clarify the relation between the head angle and the amount of directional correction. We intend to follow the operation of experienced operators in developing the fuzzy rule.

![Fig. 2 Definition of head angle and pitching angle variation](image1.png)

\[\Delta \theta_p (k) = \theta_p (k) - \theta_p (k-1) \]

![Fig. 3 Relation between head angle and direction correction amount](image2.png)

The main element and basic operation of experienced operators of directional correction are as follows.

- Amount of position error
- Amount of direction error
- Direction error variation
- Hardness of ground
- Avoidance of a large correction if error is large
Concern with the direction rather than the position if they are small.

We have discussed vertical operation because measured values are more reliable than that of lateral operation.

We have selected the direction and position errors as input variables, and also the head angle as the output variable in fuzzy rule. The label of the input and output variables are as follows.

PB: Positive big
PM: Positive medium
PS: Positive small
ZO: Zero

NB: Negative big
NM: Negative medium
NS: Negative small

The number of fuzzy production rules are 49 with part of them being listed below.

If DT is PB and DS is PB then DO is NB
If DT is PM and DS is PM then DO is NB
If DT is PS and DS is PS then DO is NM
If DT is ZO and DS is ZO then DO is ZO
If DT is PS and DS is NS then DO is ZO
If DT is PS and DS is NM then DO is ZO
If DT is PS and DS is NB then DO is PB

where,
DT: Direction error
DS: Position error
DO: Head angle

The number of fuzzy production rules are 49 with part of them being listed below.

The membership functions are triangular. Examples of the parameter which are defined as the grade of membership function are equal to 1, are given in Table 1. These parameters are for rather soft clay ground.

Tab. 1 Parameters of fuzzy variables

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZO</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS(cm)</td>
<td>-0.5</td>
<td>-3.0</td>
<td>-1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>DT(degree)</td>
<td>-0.4</td>
<td>-0.25</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.25</td>
<td>0.4</td>
</tr>
<tr>
<td>DO(degree)</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

4. EXAMINATION WITH THE DYNAMIC MODEL

We evaluate the fuzzy reasoning using the dynamic model identified by Mr. Aoshima et al. which can be expressed by using the past pitching angle variation as the inertia effect and the head angles as control inputs. This dynamic model contains the past pitching angle variation using Eq. (1).[11]

\[
\Delta \theta_p(k) = a_1 \Delta \theta_p(k-1) + \cdots + a_n \Delta \theta_p(k-n) + b_0 \theta_h(k) + \cdots + b_n \theta_h(k-n) + e(k)
\]

(1)
where, $\Delta \theta_p(k)$: Pitching angle variation at stroke(k)
$\theta_h(k)$: Head angle
$e(k)$: Error
n: Model order
a_l, a_n, b_0, b_l, b_n: Constant parameter

Parameters in the dynamic model are identified using the least squares method, and a model order of 3 is selected. The identified parameters based on actual construction for two regions are shown in Table 2.

Tab. 2 Constant parameters

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A region</td>
<td>0.168</td>
<td>0.113</td>
<td>0.093</td>
<td>-0.056</td>
<td>0.144</td>
<td>-0.007</td>
<td>-0.066</td>
</tr>
<tr>
<td>B region</td>
<td>0.633</td>
<td>0.089</td>
<td>-0.030</td>
<td>0.160</td>
<td>-0.090</td>
<td>0.012</td>
<td>-0.053</td>
</tr>
</tbody>
</table>

Here, we suppose that the designed line is horizontal, the direction error and position error are equal to the pitching angle and position of the driving machine.

The simulator is given by the Eqs. (2) and (3) and fuzzy reasoning using the result of $\Delta \theta_p(k)$ for Eq.(1).

$$\theta_p(k) = \theta_p(k-1) + \Delta \theta_p(k) \quad (2)$$
$$Y(k) = Y(k-1) + L \sin(\theta_p(k)) \quad (3)$$

where, $\theta_p(k)$: Pitching angle of the driving machine
$Y(k)$: Position of the driving machine
L: Length of one stroke

By substituting pitching angle $\theta_p(k-1)$ and position $Y(k-1)$ into the fuzzy reasoning, control input $\theta_h(k)$ can be estimated. Next, directional correction $\Delta \theta_p(k)$ using Eq. (1) can be estimated. Then both pitching angle $\theta_p(k)$ and position $Y(k)$ using Eqs. (2) and (3) are solved.

Here, fuzzy reasoning is carried out using the Min gravity method.

We examined how the error can be stabilized, with initial errors being given. Figures 4 and 5 show the simulation results using an initial error of -0.5 degrees and -5.0 centimeters. These simulation results show that fuzzy reasoning can stabilize the driving machine. The difference of how to stabilize between A and B region depends on the parameters of the dynamic model that is the difference of the soil condition.

Now, we apply another fuzzy rule in which control to access the designed line is a little strong. Figure 6 shows that the driving machine becomes a little unstable and changes in the head angle are in excess. Thus, we can determined the fuzzy rule for the soil condition.
Fig. 4 Simulation result of A region

Fig. 5 Simulation result of B region

Fig. 6 Another simulation result of A region
5. EXPERIMENTAL RESULT

To evaluate the directional control facility employing fuzzy reasoning, we conduct a in-site field test. Here, fuzzy reasoning was carried out by FRUITAX made of Fuji Electric Co., Ltd.. Conditions of the field test are as follows.

- Driving distance: 30 m
- Designed line: Horizontal
- Depth: 2 m
- Soil condition: Loam, N-value=2, 3

The driving machine was set up with about -1.0 degrees of direction error. We drove the driving machine without control in 2.5 meters and with control employing fuzzy reasoning from there on. Figure 6 shows that fuzzy reasoning can stabilize the driving machine in field in-site. The responses to the corrections in the short distance are a little sensitive, since the fuzzy rule, if anything, is more suitable for soft soil. On the whole, it can be seen from this result that the system employing fuzzy reasoning is capable of providing a control facility equivalent to those of experienced operators.

When this system is applied for practical use, the fuzzy rule will need some changes so as to be suitable for the soil condition in-site.

![Fig. 7 Result of field test](image)

6. CONCLUSION

First, as it is very difficult to clarify the relation between the head angle and the amount of directional correction, we studied directional control know-how from experienced operators, and made our fuzzy rule based on what we learned. Then, by using the dynamic model expressed by the past pitching variation, as the inertia effect and the head angles as control input, we could evaluated the fuzzy rule and obtain knowledge on the effect of changing rule. Finally, we conducted a field test employing the fuzzy reasoning fit for this type of ground with stabilized driving proving that the system is capable of providing a control facility equivalent to those of experienced
operators. This system, employing fuzzy reasoning, will contribute to higher productivity and quality of construction work and make remarkable progress to the end goal of automatic microtunneling processing.

Regarding practical use, as there are some disturbances during driving, it will be necessary to change the fuzzy rule in this system. To this end, we will make effort to complete this system as intelligent expert system in which a knowledge base are accumulated.

7. ACKNOWLEDGEMENT

The authors would like to express their appreciation for the guidance of Mr. Hiroki Obata, Mr. Rikuo Takano, Mr. Kazuo Toyokawa, Mr. Youji Oku and for the discussion of Mr. Yoshihiko Nojiri, Mr. Takenori Morimitsu, Mr. Kazuyoshi Ooshima, and for the provision of the dynamic model by Mr. Shin-ichi Aoshima.

This is the product of combined efforts of Public Works Research Institute of The Ministry of Construction and NTT.

8. REFERENCES