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Abstract : The position control of a load at the far end of a long, non-rigid arm by an

actuator at the near end is considered. The actuator must integrate two tasks: position

control of the load and active absorption of vibration to steady it in position. A control
strategy based on the launching and absorbing of mechanical waves by the actuator is
presented. It is shown to work remarkably well for longitudinal waves in lumped mass-

spring systems, being robust, close to optimal and inherently adaptive. Only the first two

masses and springs need to be characterised and observed to determine the required
actuator movement The approach also applies to related continuous systems. The case of
flexural, transverse waves is under study and looks equally promising.

Keywords : Position control, active vibration absorption, mechanical waves, flexible robot

arms.

1 INTRODUCTION
Industrial robot arms generally achieve position

and vibration control, by having relatively short and
very stiff/massive arms . This makes them relatively
heavy, power-hungry, expensive, and slow. Lighter
arms are considerably more dynamic, are safer in
operation , and less expensive to make and operate.
But they have the obvious problem of being more
flexible and therefore prone to large amplitude
vibration. This makes rapid position control very
difficult. A further complication is that, in general,
the dynamic response of the arm cannot be
predicted, because it depends strongly on the load
mass which may be unknown or variable. Also the
precise position of the arm tip may be difficult to
ascertain.

Vibration could be inhibited by adding passive
dampers, but this would also inhibit rapid dynamic
response (and increase energy consumption). Active
vibration control (using a controlled actuator)
therefore seems attractive. Rather than add a new
actuator, an obvious solution would be to use the
existing actuator to do two jobs: position the load
mass at the far end of the flexible arm and control
the vibration . Combining the two tasks is not just
expedient: it is essential . Because any movement of

the actuator to achieve position control
simultaneously and necessarily introduces vibrations
into the flexible arm

This paper presents a control strategy which tells
the actuator how to achieve the double task. It is
based on the idea of mechanical waves. A movement

of the actuator is considered as launching a wave
into the flexible arm. The actuator must then absorb
reflected waves actively, with precisely the correct
amount of "give" (being neither too rigid nor too
free) while simultaneously imposing the required

position . When all movement has ceased, the load

mass should end up in exactly the correct position,
because further attempts to correct residual position

errors will initiate further vibration.
The paper uses on a lumped mass-spring string

model, moving longitudinally, to develop and
illustrate the ideas, and then briefly considers their
extension to continuous systems and flexural
vibrations.

2. LUMPED, LINEAR MASS-SPRING
MODEL.

As a first model, consider an actuator at one end
of a string of masses and springs, giving a lumped-
parameter model of a flexible arm, with a load mass
at the far end. Fig. I shows a system of n mass-
spring units . If the system is uniform, i.e. k, = k2 =

...=k„=k and m, =mz=...=m„=m, then any

movement of the actuator will propagate a transient
wave down through the system. If the actuator
undergoes a net displacement as a result of its
movement, then the wave propagated by that
movement will cause the same net displacement of
any mass as the wave passes that mass. When the
wave reaches the final mass, it will be reflected and
start to travel back towards the actuator. Somewhat
surprisingly, as the returning wave passes any given
mass, it will cause the mass to displace by the same
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amount again (in the same direction as the original
displacement).

Actuator

Fig. 1 . Multiple degree of freedom , lumped
parameter model of flexible robot arm.

Thus if the actuator propagates a wave with a net
displacement of one unit then, after one reflection,
the end-mass will have undergone a net
displacement of two units. Now, if a zero reflection
condition can be established at the actuator for the
returning wave, then the actuator will effectively
absorb the returning wave, and the entire system
(including the actuator) will come to rest having
undergone a net displacement of two units.

In other words, to move the end-mass a desired
amount, the actuator is initially moved half this
amount, and then is allowed to be "dragged" by the
returning wave (in a precisely controlled way) which
leads to a net actuator displacement of exactly the
second half of the desired total displacement of the
system. This has the effect of efficiently absorbing
all vibration energy out of the system while leaving
it at rest at the desired new position. Thus the
"contending" requirements of position control and
vibration absorption are seamlessly integrated, in a
way which is independent of the load mass.

The concept may be extended to systems that are
not uniform. Any non-uniformity in the system
(differing masses or stiffnesses along the arm) will
cause an incident wave to be partially reflected and
partially transmitted. If all reflected waves are
absorbed by the actuator, then it is easily shown that
the end-mass will ultimately come to rest at the
correct position. Furthermore, this control strategy
continues to perform well even when the actuator
response is not ideal, and when internal damping is
present. It will also cope naturally with vibrations
entering the system from an external source.

3. WAVE ABSORPTION
For the actuator to present a zero reflection (or

total absorption) condition to any returning wave
two requirements must be met. Firstly, the motion of
the masses must be analysed so as to separate it into
two counter-propagating waves, one outgoing from
the actuator (which is to be "allowed through"), the
other the returning transient from the system (which
has to be absorbed , or passed out of the system). This
separation problem is not trivial and is considered
below. Secondly , to allow the returning wave to pass
out of the system , there should be no dynamic
mismatch between the first mass -spring unit and the

actuator. To achieve this the strategy adopted is to
make the actuator behave, to an incoming wave, as if
it were the beginning of an infinitely long string of
uniform masses and springs matching the mass-
spring unit next to the actuator. This allows transient
and steady-state waves from any source to be
effectively absorbed by the actuator. In this context it
is necessary to determine the response of an infinite
string of mass-spring units to an impulse input.

Xi-!(t) Xl!) Xi+1(t)

k k k k

Fig. 2. Infinite -infinite uniform mass spring
system.

Fig. 2 shows an infinite number of uniform mass-
spring units extending in both directions. Equation
of motion for an arbitrary mass (i) is:

mx, = k(x,-t (t) - 2x; (t) + xi+t (t)) (1)

Assuming all initial conditions are zero, and letting

w = k/m , this may be transformed to the Laplace

domain, yielding:

s2X; (s) = 0w2(X1_1 (s)-2X; (s)+Xi+1(s)) (2)

The dynamic response of the infinite mass-spring
system can be characterised by a transfer function
G(s) which relates how any mass (i) moves in
response to a movement of an adjacent mass (i-1).
Thus:

Xi (s) = G(s)X,_1 (s) (3)

The same relationship will exist between mass (i+1)
and mass (i), giving

Xt+t (s) = G2 (s)X;-t (s) (4)

Substituting (3) & (4) into (2) and simplifying
yields a quadratic in G(s):

w2G2 (s) - (s2 + 2(02 )G(s) + w^ = 0 (5)

Hence:

G(s)= 2w2 [(s2 +2&),' ) ±s(S2 +40)2)2
n

(6)

Only one solution for G(s) tends to zero as s tends to
infinity (the solution with the negative sign before
the radical), making this the only real solution in the
time domain. This solution corresponds to a wave
moving from left to right through the system. The
second solution corresponds to a wave moving from
right to left.

The time-domain function g(t), corresponding to
G(s) in the Laplace domain, is the unit impulse
response between adjacent masses in the infinite
mass-spring system. By convoluting an incoming
wave with g(t), it will be possible to produce a
control signal that will cause the actuator to absorb
the incoming wave.
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To detect incoming waves, and therefore to
distinguish between rightwards propagating and
leftwards propagating transient waves in the system,
consider again the system shown in Fig. 2. Suppose
there are both leftwards and rightwards propagating
waves in the system . The motion of mass (i) can be
regarded as consisting of two components , motion
due to rightward propagating waves = R;(s), and
motion due to leftward propagating waves = Li(s).
Hence:

Xi(s) = Ri(s) + L, (s) (7)

Similarly:

X,+1 (s) = Ri+1 (s) + Li+1 (s) (8)
Now:

R1+1 (s) = G(s)R; (s) (9)

and, by symmetry, the characteristic transfer
function G(s) is the same for motion in both
directions, so

Li (s) = G(s)Li+1(s) (10)
Substituting (9) & (10) into (7) & (8) yields:

Xi (s) = Ri (s) + G(s)L,+, (s) (1 1)
X1(s) = G(s)Ri (s) + L1+1 (s) (12)

Substituting for LL(s) from (12) into (8) and solving
for Ri(s) gives the result

I (s)=(Xi(s)-G(s)X1+,(s))/(1-GZ(s)) (13)

Substituting this result back into (12) and solving
for Li+1(s) yields:

4+1(s) _ (Y+1(s) - G(s)X, (s))/(1- 0 (s)) (14)

Thus, if it is possible to observe the position of
two adjacent masses, and in particular X1(s) and
Xz(s), it will be possible to differentiate between
incoming and outgoing waves, and in addition, to
instruct the actuator to absorb any incoming
(returning) waves. To do this, it is sufficient to have
knowledge of the nature of the system close to the
actuator (i.e. the nature of the first two spring-mass
units which should be uniform), and to be able to
observe the position of the first two masses.

Note that the transfer function G(s) is unusual in
that, while it relates to two adjacent local masses, it
does so while assuming that these masses are
embedded in an infinite string of masses and
springs. In this sense it is both local and global, and
it remains valid no matter how many masses are in
the string or how few. The effects of longer or
shorter strings are modelled by the appropriate
boundary conditions, not by modifying G(s), which
is like a "characteristic transfer function" of the
string. The validity of this approach can be
demonstrated down to the shortest possible "string"
of just one spring and mass.

4 PRACTICAL IMPLEMENTATION

To test the concept, a computer simulation of the
control algorithm has been developed. To convolute
an input signal with g(t) (= L -1 [G(s)] ), an impulse
response corresponding in magnitude to the value of
the input signal is set up at each simulation time-
step, and added to the cumulative effect of all the
impulse responses set-up for previous sampling
points. The output is the sum of all these impulse
responses.
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Fig. 3 . Unit impulse response of mass (1) in a
finite length mass-spring system.

To find g(t), it is possible to expand (6) to an
infinite series, and convert back to the time domain,
resulting in a type of infinite power series. This is
computationally inefficient however and a better
approach exists. The impulse response of a finite
string of m mass-spring units consists of m
harmonics. If m is sufficiently large (that is, if the
string is sufficiently long), then the vibration of the
initial mass will have decayed to almost zero before
the wave set up by the impulse returns after
reflection at the far end (see Fig. 3).

A pseudo-infinite mass-spring system response
can be obtained by taking the first section of this
waveform (up to the cut-off time, T), and thereafter
setting g(t) identically equal to zero. In practice this
means setting up a series of about twenty harmonics
for each sampling interval for a period of time equal
to T , and then `switching off" those particular
harmonics. This approach is not only
computationally efficient: by a happy coincidence it
also ensures the stability of the feedback system, as
can be shown. Formally therefore, g(t) is described
as

g(t) _ a , sin ficons , for0 < t < Tl[o,,,
i.1

and g(t) = 0, for t > 17 tun (15)
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where a; are the amplitudes of the contributing
harmonics and f are the ratios of these frequencies
to co,,, with 0< f <2.0

X.1,1

X,(s) Input signal
X,(s) • Actuator control X'

signal
Xe(s) • Actuator position

Wave - absorbi/.g
component

X„(s) = End- mass position

Fig. 4. Block diagram representation of the
control system.

In practice, incoming waves may be distinguished
from outgoing waves using a positive feedback loop
to implement (14). Fig. 4 shows a block diagram
representation of the complete control system.
For the record, as it were, the transfer function
giving the response of the actuator Xo(s) to any
desired position input Xd(s) can be shown to
be

Xc(s)=Xd(s

1
^Qsll-d(s)J

^as)Vs)-Gz(0s)Vs)+P (s)-- SWt (s)J

so that the term in the large brackets is effectively
the overall transfer function of the control system.
This follows from Fig. 4 and some manipulation,
with 1/U(s) = A,(s), the transfer function of the
actuator, and the response Xi(s)of any mass in the
system to an input Xo(s) from the actuator being
given by

X.(s) = Xo( s)^1'(S)1
Q (s)

(17)

so that Q(s) is the characteristic polynomial of the
multiple-degree-of-freedom system under control
and Pi(s) is a polynomial which depends on i.

5. PERFORMANCE EVALUATION
AND COMPARISON

Fig. 5 shows the response of the system to a step
input when controlling a uniform three mass system
with ml = m2=m3= 1 kg and k1 =k2=k3=300Nm-

and with an ideal (zero order) actuator , i.e. an
actuator with a transfer function equal to one. For a
simple system such as this, the two distinct phases of
the actuator movement are clearly distinguishable.
The initial phase has the actuator moving 0.5 in and
coming momentarily to rest ; the second phase, when
the feedback signal arrives, has the actuator moving
the remaining 0.5 m and oscillating around the final
position as it absorbs the vibrating energy out of the
system while bringing it to rest at the desired new
position . During the initial phase , a step wave is
propagated and during the second phase the reflected
wave is absorbed.
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Fig. 5. Step response of control system with
idealised actuator.

Fig. 6 shows the step response of the same
system, but with a DC servomotor as the actuator.
Because the actuator is no longer ideal, the reflected
wave is not fully absorbed by the actuator, resulting
in partial absorption and partial propagation back
out into the system. This process will continue with
each reflected wave being partially absorbed, and
partially re-propagated, resulting in successive
removal of energy from the system in a limiting
sequence. It may be shown by considering the
overall transfer function for the control system (16),
that the final position of the end-mass will be correct
(i.e. zero steady-state error) provided that the steady-
state gain of the actuator transfer function is unity.

1.2-1

10-1

E 0.8

02-I

00

00 C2

••••••• Input Signal

Actuator Response

End-mass Response

0.4 0.6 01 1.0 12 14

Time (s)

Fig. 6. Response to step input with actuator
modelled as DC servomotor.

After stability and steady state error, typically the
two most important performance issues of a position
control system are response time and residual
vibration amplitude. Fig. 7 shows a comparison
between the response of the wave-absorption control
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system (with idealised actuator) and that of a multi-
switch bang-bang forcing function, which has been
shown to give time-optimal performance if the
actuator is not force-limited (Bellman et al. (1956)
and LaSalle (1960)).
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Fig. 7. Comparison of wave-absorption control
with multi -switch bang - bang control.

Wave-absorption control compares very favourably
both in terms of response time and degree of residual
vibration. Furthermore, wave-absorption control is
inherently more adaptive than bang-bang control
and other open-loop control strategies such as those
proposed by Meckl and Seering (1985), which are
not as robust to changes in the natural frequencies of
the system being controlled. Fig. 8 shows the step
response of the same system (again with idealised
actuator) with m3 increased to 2 kg. Although this
change affects the natural frequencies of the system,
and thus its dynamic response, it does not impair the
performance of the control system.
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Fig. 8. Step response for system with m3 = 2 kg.

Natural or inherent damping in such systems is
frequently very light, so a damper-less model is
appropriate. If required however, the effects of
damping can be built into the model without
difficulty.

6 CONTROLLED AND OBSERVED
VARIABLES

From the perspective of state-space control, or
modal analysis , this control strategy is remarkable as
it performs very well without attempting to identify,
or to control , the states of the system or the modes of
vibration directly. An n degree of freedom system (n
arbitrarily large) is being controlled by controlling
one variable (actuator position ), whilst observing
just two variables (the position of the first two
masses after the actuator).

Better physical insight is obtained by thinking in
terms of mechanical waves. When the actuator
moves for any reason , it launches a transient wave
(or disturbance) into the system which must travel
out to the end-mass before returning . Any such
additional wave sent out by the actuator will be
either chasing existing outgoing waves already in the
system or passing through existing returning waves.
The only waves the actuator can absorb or "cancel"
are those coming towards it, and it must await their
arrival to do so. Hence it does not need (and,
curiously , cannot use) information about "waves" or
state variables some distance away.

A practical implication is that the most useful
sensors are those that give information about the
section of the arm closest to the actuator . These are
easier to mount and monitor than sensors monitoring
the far end.

Active vibration damping is well known, for
example in controlling structural vibrations and in
vehicles. What is novel here is its combination with
position control . Also novel is the "merging
moieties" control concept : that of moving a load by
launching a wave of half the required amount and
then letting the system "drag" the actuator the
remaining half in a precise way to reach rest at the
required position.

7. WIDER IMPLICATIONS

The proposed strategy also works well for the
corresponding continuous (distributed ) mass-spring
systems, where the mechanical waves now have a
continuous medium . In fact , in this case the problem
of separating the returning from the outgoing waves
is easier . Also extension of the ideas to torsional
vibrations (whether in lumped or continuous
systems) is almost trivial . So, for example, the
twisting vibrations of a vertical crane structure due
to a rotating actuator at the base could be treated in
an exactly analogous manner.
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Flexural vibrations are another matter however.
Here the limiting equation is not the wave equation
(with 2 order derivatives in space and time), but
the Euler -Bernouli vibrating beam equation, in
which the acceleration -causing effect (beam
bending) has a fourth order derivative term with
respect to space. This whole matter is an on-going
research topic. Nevertheless it has already been
established that the basic concepts of launching and
absorbing waves does work for flexural waves. The
actuator now needs to be able to "match " both shear
force and bending moment "waves", and the actuator
frequency response typically needs to be an order of
magnitude higher . Paradoxically , the more flexible
the system (and therefore the worse the problem) the
less demanding are the requirements on speed and
force.

Finally, these ideas have application to the
problem of controlling the position of a load at the
end of a crane cable or chain as the crane moves,
particularly when the cable/chain is heavy. Space
does not permit development of the idea , but the
wave launching and absorbing strategy will work,
with some modification to allow for varying wave
speed with varying tension.

8. CONCLUSION
Position control of flexible robot arms aims to

achieve fast response times with a minimum of
residual vibration . The wave-absorption technique
provides an inherently adaptive and robust control
strategy that compares very favourably with existing
strategies in terms of response times and degree of
residual vibration . It's performance with non-ideal
actuators is only marginally impaired . Although a
relatively large degree of computational effort may
be required for real - time implementation, only a
limited amount of sensory information is necessary,
and comparatively little information on the nature of
the controlled system is required . Work is at present
under way to extend the technique to the control of
flexible beams, already with promising results.
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