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Purpose  Underground transportation systems are big energy consumers and have a significant impact on energy con-
sumption at regional level. One third of the networks’ energy is required for operating the subsystems of metro stations 
and surroundings, such as ventilation, vertical transportation and lightning. Although a relatively small percentage of 
energy can be saved with optimal management of these subsystems, in absolute terms this means large energy savings 
are obtained. Furthermore, optimal management is a big opportunity for energy efficiency since it involves much smaller 
investments than those usually applied to transportation by providing new ways for sustainable energy saving solutions. 
In this perspective, the EU-funded R&D project SEAM4US (Sustainable Energy Management for Underground Stations) 
is aimed at defining a technological and methodological framework for optimized energy management in public under-
ground spaces, which will be applied to the dynamic control of the energy consumption in Barcelona Passeig de Gracia 
subway station.  Method  The development of a new class of predictive control logics, behaving consistently in changing 
environments is at the core of the optimal energy management approach and it is one of the main objectives of this re-
search. This class of control systems is based on advanced environmental models, directly coupled with an environment 
monitoring sensor network, that is capable of interpreting the sensed data (both indoor and environmental) and of fore-
casting future states. In order to achieve the necessary level of robustness these models must be able to learn from 
previous states so they can adapt to the varying environment. The development of this class of environmental models for 
large underground environments like subway stations involves the elaboration and the integration of different simulation 
models concerning natural and forced ventilation, passenger movement, lighting systems, and their integration in a 
unique formals statistical framework, which is able to manage the uncertainty affecting the sensed data and to learn from 
the data flow.  Results & Discussion  We will outline the methodological approach to the development of the Passeig 
de Gracia environmental models for the optimal control of its energy consumption. The adopted hybrid modeling solu-
tions, integrating different classes of simulation means in a unique Bayesian framework4, and a preliminary architecture 
of the overall control system will be presented. 
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INTRODUCTION 
Control systems applied to public underground envi-
ronments, like subway stations, have been tradition-
ally based on suboptimal homeostatic short-term 
feed-back mechanisms which are applied singularly 
to each equipment type. Recently, the availability of 
pervasive sensor networks, allows us to accurately 
monitor dynamics of the indoor environment and to 
implement complex anticipatory optimal control poli-
cies1. The implementation of optimal control policies 
requires the development of integrated models ca-
pable of predicting the near future behaviour of the 
controlled environment under specific conditions, so 
that the optimal solution can be sought through sce-
nario analysis2.  
 
The objective of the SEAM4US research is the de-
velopment of an advanced control system for the 
“Passeig de Gracia – Line 3” (PdG-L3) subway sta-
tion in Barcelona capable of setting up the internal 

environments opportunistically, in the optimal way, 
on the basis of forecasts regarding the external envi-
ronment, according to energy efficiency, comfort and 
regulation requirements. This application domain 
raises a number of issues which make the develop-
ment of a station’s integrated model a challenging 
engineering task. 
 
Application domain  
First of all, the integration of dynamics and scales at 
different levels, both in time and space domain. In 
fact modelling environmental processes that are 
time-continuous (weather, building physics) and 
typical events of a subway station (train arrival, peo-
ple activities) into a single framework is quite com-
plex3. Furthermore, the analysis of occurring envi-
ronmental dynamics often requires dimensional 
scales moving from the decimetres of a fan vent to 
the thousands of meters of urban canyons. 



Second, different processes characterizing subway 
station dynamics have different natures. Discrete 
time events, quite random processes such as pas-
senger flows, multi-physics involving thermal, airflow 
and pollutants, stochastic processes such as the 
weather should need very different type of models. 
Their integration in a unique model requires the 
adoption of a rather articulated modelling approach, 
in order to study each process with the most effec-
tive computational tool available, and to subse-
quently use a very flexible modelling mechanism to 
integrate each single model in the overall frame-
work3. 
These models must also be capable to integrate 
advanced control processes, in terms of sensor-
actuator networks and control logics. This is far from 
usual, as common building simulation environments 
are mainly procedural and offer only quite basic 
control scenarios4. 
Furthermore, most of the data defining models’ 
boundary conditions is affected by uncertainty to 
some degree.  Therefore, the models should be 
capable of propagating this uncertainty throughout 
the computational chain, in order to support the de-
cision maker with certainty factors qualifying the 
estimated performances5. 
A final noteworthy aspect concerns system adaptiv-
ity. As the model supports management decisions 
taken by the human controller, the proposed sce-
nario must reflect changing reality as much as pos-
sible. To this objective, the models must be capable 
of improving their performance by adapting their 
behaviour on the basis of the measured environ-
mental data6.  
 
CONTROL FRAMEWORK  
Subway stations are nonlinear, multivariable non-
stationary, stochastic and constrained processes 
even with hybrid dynamics (with mixed continuous, 
discrete, on-off variables). Despite the complexity of 
the process and interested domain, the control ob-
jective in the SEAM4US research is clear: minimize 
power consumption. Therefore, in order to maximize 
its efficiency, the control system needs to have some 
features. 
First of all, the control policy has to be optimal, in 
the sense that it attempts to find the values of a vec-
tor of design parameters that yield optimal system 
performance, subject to some architectural and com-
fort constraints. The system performance can be 
measured by a so-called cost function7.  
The identification of control constraints is a chal-
lenging and key step: it could mean also considering 
a hierarchy of constraints and control functions. In 
fact, the economic operating point of a typical proc-
ess unit often lies at the intersection of constraints8, 
and often significant benefits do not come from sim-
ply reducing the variations of a controlled variable 

but dynamic controlling variable set-point to be 
moved closer to a constraint without violating it9. 
Control constraints derive directly from implicit and 
explicit system/process requirements, such as com-
fort (thermal, lighting, acoustic…), health (e.g. air 
quality) and safety, but from the operational require-
ments of the equipment also. 
Furthermore, the control system has to be adaptive. 
In fact, even if most current techniques for designing 
control systems are based on a good understanding 
of the system under study and its environment, in 
cases like subway stations, the system to be con-
trolled is too complex and the basic physical proc-
esses in it are not fully understood. Thus, control 
design techniques need to be augmented with an 
identification technique aimed at obtaining a pro-
gressively better understanding of the plant to be 
controlled10. Adaptive control is a technique of apply-
ing some system identification technique to obtain a 
model of the process and its environment from input-
output experiments and using this model to design a 
controller. The parameters of the controller are ad-
justed during the operation of the system as the 
amount of data available increases through on-line 
learning. 
Finally, predictive control is necessary for achieving 
high energy efficiencies: prediction gives the capabil-
ity of taking soft control actions in advance, thus, 
saving energy. Predictive control is based on the 
Receding Horizon strategy, that is the control action 
is designed by running the model of the process over 
a given prediction horizon and evaluating the control 
sequence that gives the minimum value of the cost 
function11,12 . 
All these control features suit perfectly but require 
the development of integrated models capable of: 
• achieving  adaptation feature by recursive online 

identification (or tuning) of process model, 
• fully exploiting stochastic models by including 

both predicted values and uncertainties in the 
cost function formulation, thus modulating the 
reactivity of the controller based on the reliability 
of the obtained predictions,  

• predicting the near future behaviour of the con-
trolled environment under specific conditions. 

The SEAM4US approach adopts Dynamic Bayesian 
Networks (DBN) 13which provide native uncertainty 
management, machine learning capabilities and, 
consequently, offer a good basis for adaptivity and 
decision support. 
 
MODELLING FRAMEWORK  
In this perspective, a hybrid modelling framework 
was defined, aimed at integrating different types of 
models in an overall Bayesian model in order to 
efficiently support control logics. 
Operationally, different types of models are needed: 



- a set of predictive models that can represent 
the stochastic variables such as weather. They 
also have been modelled through Bayesian 
Networks; 

- the development of the overall DBN requires the 
definition of a training set and a number of fine 
tunings that can be accomplished only via a 
running model which closely resembles both the 
environmental physics and the control policies. It 
must be a Whole Building model and the 
SEAM4US approach develops it in the Mode-
lica-Dymola simulation environment; 

- various models are needed for the detailed 
analysis and modelling of the thermal and 
airflow processes. They are aimed at investi-
gating a number of specific conditions that will 
be modelled coherently in the whole building 
model, through boundary conditions and specific 
components. They have been modelled through 
Finite Element Method (FEM) multi-physics 
models. 

This section briefly presents the models developed 
so far and the structure of the preliminary Bayesian 
network that will support the controller. All models 
presented are a first version and need to be vali-
dated through experimental data in the following 
months. 
 
Weather Predictive Models 
The prediction of wind speed and direction are pro-
vided to both the airflow and temperature networks 
by the weather model. The weather model is a prob-
abilistic Bayesian model, shaped as a fourth order 
Markov chain. Three chains representing air tem-
perature, wind speed and direction were imple-
mented as shown in Fig. 1.  

  
Fig.1. Weather Prediction Model 
 
The data provided by the Barcelona weather files 
were used to initially define the structure and the 
preliminary network conditional probability tables. 
The analysis led to a second order Markov chain for 
air temperature and wind speed and to a third order 
Markov chain for wind direction. Further refinements 
will be performed on the basis of the forecasting data 
provided by on-line weather services such as 
(WWO, 201214). 
 
 

Whole Building Models 
The Whole Building Model is fundamental in the 
overall model engineering process because it pro-
vides support to the development of the stochastic 
model through four main points: 
- the definition of the pre-training set used to learn 

the conditional probability tables of the Bayesian 
Network; 

- the integration of the devices’ operational con-
straints in the forecasting process; 

- the definition of the optimal fading rate of the 
Bayesian Network learning algorithm which op-
timizes the adaptive behaviour; 

- the overall assessment of the stochastic system 
before its deployment. 

Although, as already said, it cannot be developed 
efficiently in the common building simulation envi-
ronments, as they do not support features such as 
advanced control integration, multi-physics in many 
cases and the integration of specific components 
and/or boundary conditions. Specifically, for model-
ling the “Passeig de Gracia (PdG) - Line 3” it is nec-
essary to insert specific boundary conditions for 
modelling the terminal sections of tunnels and corri-
dors linking to other stations (station link in Fig. 2). At 
these boundaries, specific conditions in terms of 
Heat Flow, air flow and Mass Transfer (water and 
pollutants) have to be assigned in order to model the 
actual dynamics occurring.  
 

Fig.2. Overview of the three Passeig de Gracia stations, 
belonging to Line 2, Line 3 and Line 4. 
 
As common simulation software do not provide these 
key representational features, the Modelica frame-
work, with the Buildings library in the current re-
lease15 and the Dymola© environment were chosen 
as the SEAM4US development platform.  
In the current development state, the implemented 
physics are heat transfer and airflow. Lighting, pas-
senger flow and trains will be implemented in future 
releases. The Modelica station model (Fig. 3) was 
built using the room model of the Buildings library 
customized for underground spaces (e.g. windows 



have been deleted) to reduce the number of vari-
ables and improve efficiency, making the large sta-
tion model manageable.  
A number of further customizations were required in 
order to match the particular equipment present in  

the station (i.e. fan coils models, lighting models, 
etc.) and, most importantly, to link their behaviour 
with actual energy consumption. 

 

 Fig.3. The top level blocks of the “Passeig De Gracia” subway station Modelica model. Each top level block corresponds 
either to a main ambient or to a connection. 
 
The data derived from the CFD scenarios were used 
for modelling the airflow in a number of pilot station 
boundaries such as lengthy pedestrian corridors 
leading to other stations (station link) and station 
entrances. In particular, Wind Pressure Coefficients 
for each entrance, were specifically computed for our 
case since, literature16 provides values and formulas 
for calculating the wind factor for low rise buildings 
which cannot be applied in this case.  
An in situ survey is, of course, required in order to 
validate data obtained from CFD models. However, 
this approach allows estimating the overall thermal-
fluid dynamics occurring in the pilot station before 
the deployment of the sensor network. 
 
Boundary and Specific Conditions through FEM 
Models 
The PdG whole building model contains a number of 
specific boundary conditions and specific spatial 
components that were modelled using data derived 
from FEM models. All FEM models developed repre-
sent airflows, using Computational Fluid Dynamics 
(CFD) methods and some of them combine it with 
heat transfer and transport of diluted species. 
Literature concerning underground environments 
CFD FEM modelling is not much extended. Many 
studies are design-oriented, evaluating the effects of 
specific technological solutions17 or focused on mod-
elling dynamics occurring in case of fire18. Other 
studies are more oriented on discussing a methodol-
ogy for an effective CFD modelling of subway sta-
tions. As usually, they are large volume, some simpli-
fications have to be adopted. Yuan19 reports that 
simplification of the airflow to steady process and 
presumption of the transient velocity to the time-
averaged velocity are applicable to simulate the 

distribution of temperature and air velocity of subway 
platform in the pulling-in cycle. 
Two types of FEM models were developed so far. 
 
CFD models for Wind Pressure Coefficients 
Whole Building Models use Wind Pressure Coeffi-
cients for Computing airflows entering in the building 
(Fig. 5). An outdoor urban canyon model, encom-
passing the eight city blocks surrounding the station 
entrances, was developed to determine the pressure 
and velocity maps at the station entrances for each 
main wind reported in the Barcelona weather file. 
The model contains both the outdoor blocks and the 
underground environments (Fig. 4).  
 

 

Fig.4. Typical streamline map resulting from an urban 
canyon simulation of the city blocks 
 



Fig.5. Section view of streamlines in an entrance  
 
Critical parameters, like dimensions of the computa-
tional domain, have been determined on the basis of 
the literature20. In any case, sensitivity analysis was 
carried out concerning the presence of tall trees, 
balconies and recesses in the building facades in 
order to determine the right detail level in terms of 
the geometric model. The simulation was carried out 
with COMSOL Multi-physics 4.2, 3D steady state 
analysis21, with a mesh size ranging from 2.5m to 
16.7m. In the end, 81 scenarios, distinguished for 
wind direction and speed at 200m altitude, were 
defined. 
 
FEM models for Specific Spaces 
A number of detailed FEM model for evaluating the 
airflow-thermal behaviour of specific spaces are 
needed, for instance for coherently modelling alter-
native corridor-spaces that in the nodal perspective 
of whole building software could be equivalent, but 
are not, in fact,  because of their spatial features 
(Fig. 6). 
 

 
Fig.6. Example of spatial configuration where the pres-
ence of alternative paths needs to be investigated 
through FEM analysis in order to be modelled coher-
ently with the nodal approach. 
 
In order to have more detailed airflow boundary con-
ditions for the specific space models, a further set of 
81 scenarios for a more detailed analysis of the 
overall indoor environment, with a mesh ranging 
from 0.35m to 3.26m was developed. This more 
detailed indoor analysis also integrated the boundary 
conditions imposed on the ventilation shafts by the 

two fan coils pumping air inside the station at a 
speed of 60000m3/h and the ones imposed by the 
tunnel fan coils extracting air at a speed of 
90000m3/h.  
The development of the specific spatial portion mod-
els is on-going. They combine heat transfer, CFD 
and transport of diluted spaces. 
 
PASSEIG DE GRACIA-LINE 3 BAYESIAN MODEL  
The last model engineering stage consisted in the 
development of the PdG-L3 station’s Dynamic 
Bayesian Network model. The development of the 
Dynamic Bayesian Network, consists in three 
phases: 
1. definition of the network topology; both static 

and dynamic (usually called structural learning), 
2. preparation of the training set and the learning of 

the conditional probability tables, 
3. final assessment of the network using the LPM 

as the reference before deployment, in a model-
in-the-loop architecture. 

The sampling time chosen was 30 minutes because 
of actual fan coils control time constant, which is 
about one hour. The training set for the network was 
obtained by running the Whole Building Model for 
one week. Assuming 30min sampling intervals, in 
this preliminary release, airflow dynamics was con-
sidered nearly instantaneous, since any pressure 
impulse from the outside is capable of propagating 
inside and is exhausted within one sampling interval. 
Hence, a simple static Bayesian Network was used 
to represent airflow (Fig. 7). The static network to-
pology was directly derived from the station layout, 
and it completely reflects the sensor network topol-
ogy. In other words, each DBN node corresponds to 
a sensor and the links reflect the physical connection 
among the indoor spaces. Three further nodes were 
added representing environmental conditions: out-
door air temperature, wind speed and wind direction 
(white nodes). The links between the indoor air tem-
perature in each hall and the correspondent airflow 
capture the buoyancy phenomenon, while the links 
among the connections and the halls reflects airflow 
induced by the dynamic pressure gradients.  
 
The yellow node (PL3_NET) accounts for the net 
flow passing through the platform and it was used for 
control strategies. Grey nodes refer to forced ventila-
tion directly on the platform (PL3_F) and from the 
tunnels (TL3_F). In order to estimate air temperature 
inside the station, given that the station envelope 
time constants exceed six hours, the envelope’s past 
thermal states must be taken into account (orange 
nodes in Fig. 7(b)). Figure 8 shows the Bayesian 
Network for estimating indoor air temperature in the 
station halls and in the platform. The network has 
been shaped and has been learned from a training 
set produced by the LPM. 



 

 
  
Fig.7. Airflow Static Network (a) the Bayesian Network 
structure mapped on the station model,(b) the network 
portion related to the platform 
 
The temperature nodes chosen for estimation (e.g. 
HN1_T4, HN2_T4, HN3_T4, PL3_T4) depend on the 
corresponding temperatures measured during the 
previous four hours (i.e. HN1_T4 depends on 
HN1_T0, HN1_T1, HN1_T2, HN1_T3) and from the 
outside temperature wind speed and direction, WT, 
WS, WD respectively. 
 

  
Fig.8. Indoor Temperature Dynamic Network 
 
This network is capable of predicting temperature 
with an average error of 0.3 and a standard deviation 
of 0.32, by selecting the expected value of the plat-
form output distribution. 
These networks will be integrated into other net-
works modelling other physics and events of the 
Passeig de Gracia station. 
 
 
 

CONTROL STRATEGY 
From the controller point of view, PdG-L3 is repre-
sented as a block with inputs and outputs (Fig. 9). 
Inputs ( ) to the system are the variables that can be 
manipulated: Fans (frequency), Lights (level) and 
Signalling (for Passenger Paths). The outputs ( ) are 
the Power consumption and indicators for Comfort 
and Health States that must be controlled in order to 
reach certain reference levels ( ). The relation be-
tween inputs and outputs is also significantly affected 
by a set of disturbances ( ), such as weather, train 
arrival, passenger flows and fans external to the 
station: they cannot be manipulated but only “ac-
counted for” by using direct measures, when possi-
ble, together with a Disturbance Model. The internal 
state dynamics (  is function of the actual state ( ), 
inputs, disturbances and time ( ), thus it is a non-
stationary system. 
The PdG-L3 Bayesian Model, that also include a 
state estimator, is used as model for guiding the 
predictive controller. The Disturbance Model is com-
posed by different types of models (e.g. schedules 
for trains, predictive model for weather), and so far, 
some of them are still under development by other 
research groups, such as the users/passengers 
model. By connecting these continuous-time models 
to a discrete-time controller which samples the sig-
nals, the preliminary architecture of the SEAM4US 
control system can be represented at each time step 
as in Figure 10. 

Fig.9. Block  diagram representation of PdG-L3 station. 

 
Fig.10. Architecture of the model based adaptive pre-
dictive control system. 
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At each control step, the state estimator internal to 
the PdG-L3 Model receives data about the given 
input ( ) and measured output ( ) (through the sen-
sory system) from PdG-L3 station and computes an 
estimate for each significant state variable ( . The 
PdG-L3 Model uses them, together with measured 
values, candidate input sequence (  coming from 
the Predictive Controller and predicted future distur-
bances (  obtained from the Disturbance Model for 
computing the predicted output sequence (  and 
gives it back to the Predictive Controller. The optimal 
control policy ( ) is the sequence that minimizes a 
given performance index subject to a set of given 
operative constraints. Once the optimization problem 
has been solved, the first element of the optimal 
sequence (  is applied as control action. The over-
all procedure is repeated at each step thus closing 
the control loop. 
 
CONCLUSIONS 
This paper reports the modelling methodology and 
control architecture being developed for the optimal 
energy control of the “Passeig de Gracia – Line 3” 
subway station in Barcelona, in the ambit of the EU 
funded SEAM4US project. The paper outlines the 
main issues faced during the modelling of the ex-
tremely complex environment, and shows how large 
scale civil engineering applications involve a number 
of stringent requirements that cannot be satisfied if 
not with a complex model engineering approach. The 
paper gives an overview of the hybrid modelling 
solution involving probabilistic Bayesian modelling in 
conjunction with FEM CFD and Whole Building and 
their role in the overall modelling process and in the 
control framework. The project’s current develop-
ment stage leaves a number of issues open, such as 
passenger flow modelling and integration and as-
sessment after deployment on the basis of meas-
ured data. 
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